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Abstract

We present an abstract, set-theoretic denotational semantics
for a significant subset of OCaml and its module system
in order to reason about the correctness of renaming value
bindings. Our abstract semantics captures information about
the binding structure of programs. Crucially for renaming, it
also captures information about the relatedness of different
declarations that is induced by the use of various different
language constructs (e.g. functors, module types and mod-
ule constraints). Correct renamings are precisely those that
preserve this structure. We demonstrate that our semantics
allows us to prove various high-level, intuitive properties
of renamings. We also show that it is sound with respect to
a (domain-theoretic) denotational model of the operational
behaviour of programs. This formal framework has been
implemented in a prototype refactoring tool for OCaml that
performs renaming.

Keywords Adequacy, denotational semantics, dependen-
cies, modules, module types, OCaml, refactoring, renaming,
static semantics.

1 Introduction

Refactoring is the process of changing how a program works
without changing what it does, and is a necessary and on-
going process in both the development and maintenance of
any codebase [10]. Whilst individual refactoring steps are
often conceptually very simple, applying them in practice
can be complex, involving many repeated but subtly varying
changes across the entire codebase. Moreover refactorings
are, by and large, context sensitive, meaning that carrying
them out by hand can be error-prone and the use of general-
purpose utilities (even powerful ones such as grep and sed)
is only effective up to a point.
This immediately poses a challenge, but also presents an

opportunity. The challenge is how to ensure, or check, a
proposed refactoring does not change the behaviour of the
program (or does so only in very specific ways). The opportu-
nity is that since refactoring is fundamentally a mechanistic
process it is possible to automate it. Indeed, this is desirable
in order to avoid human-introduced errors. Our aim in this
paper is to outline how we might begin to provide a solution
to the dual problem of specifying and verifying the correct-
ness of refactorings and building correct-by-construction
automated refactoring tools for OCaml [21, 30].

PL’18, January 01–03, 2018, New York, NY, USA
2018.

Renaming is a quintessential refactoring, and so it is on
this that we focus as a first step. Specifically, we look at re-
naming the bindings of values in modules. One might very
well be tempted to claim that, since we are in a functional
setting, this is simply α-conversion (as in λ-calculus) and
thus trivial. This is emphatically not the case.OCaml utilises
language constructs, particularly in its module system, that
behave in fundamentally different ways to traditional vari-
able binders. Thus, to carry out renaming inOCaml correctly,
one must take the meaning of these constructs into account.
Some of the issues are illustrated by the following example.

module type Stringable = sig
type t
val to_string : t -> string

end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ^ " " ^ (Y.to_string y)
end
module Int = struct

type t = int
let to_string i = int_to_string i

end
module String = struct

type t = string
let to_string s = s

end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P.to_string (0, ("!=", 1))) ;;

This program defines a functor Pair that takes two mod-
ules as arguments, which must conform to the Stringable
module type. It also defines two structures Int and String.
It then uses these as arguments in applications of Pair, the
result of which is bound as the module P. Suppose that, for
some reason, we wish to rename the to_string function
in the module Int. To do so correctly, we must take the
following into account.

(i) Since Int is used as the first argument to an application
of Pair, the to_string member of Pair’s first parameter
must be renamed.

(ii) The first parameter of Pair is declared to be of mod-
ule type Stringable, so to_string in Stringablemust be
renamed; similarly for the second parameter, since Int is
also used as the second argument in an application of Pair.

(iii) String is also used as an argument in an application
of Pair, thus its to_string member must be renamed too.
(iv) An application of Pair is used as an argument to an-

other such application, meaning that we also need to rename
to_string in the body of Pair itself.

1
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(v) Since P is bound to the result of applying Pair, we
must then instances of P.to_string.
Thus, renaming the binding Int.to_string actually de-

pends on renaming many other bindings in the program:
failing to rename any one of them would result in the pro-
gram being rejected by the compiler. Moreover, this is not
simply an artifact of choosing to rename this particular bind-
ing; if we were to start with, say, to_string in String or
Stringable we would still have to rename the same set of
bindings. These bindings are allmutually dependent on each
other. Consequently, the phenomenon we observe here is
distinct from the notion of a refactoring pre-condition [32].
Note that although, in this example, it seemingly suffices
to simply ‘find-and-replace’ all occurrences of to_string,
this is not generally the case. If the example simply used
String as the second argument to the (outer) application
of Pair, then we would not have to rename the binding of
to_string in the body of the functor.

The salient point in this example is that the various defini-
tions and declarations that must be renamed are not simply
references that resolve to a single instance of some syntactic
construct in the program. On the contrary, they are them-
selves binding constructs, which can bind occurrences of
identifiers elsewhere in the program. Nevertheless, as noted
above, they are connected through certain syntactic con-
structions, albeit in a different sense to the notion of variable
binding with which we are familiar from λ-calculus. Since
here names matter, one way of viewing the situation might
be to see the mutually dependent declarations (and their
referents) all as instances of the same ‘free variable’ in the
program. Free variables cannot be α-renamed, and so this
view highlights the gap compared with an understanding of
renaming based in the λ-calculus.

One objection to the foregoing analysis might be that the
wide-reaching footprint of this refactoring indicates it is not
really a renaming, or that it is, in some sense, ‘undesirable’.
As to the former we would argue that, whilst the changes are
extensive, the only syntactic operation that has occurred is to
replace one identifier with another—surely, by definition, a
renaming. Regarding the latter, other alternatives are indeed
possible. One could, for example, localise the changes by
introducing a new module expression in the applications
of Pair that wraps the reference to the Int module and
reintroduces a binding with the old name.

module P = Pair
(struct include Int let to_string = ⟨⟨new_name⟩⟩ end)
(Pair(String)

(struct include Int let to_string = ⟨⟨new_name⟩⟩ end))

The point here is not that we are trying to dictate which
refactoring should be applied in any particular case, but that
we are able to characterise precisely which changes of name
are (not) refactorings. We can therefore provide a sound
foundation for a refactoring tool enabling programmers to
safely modify their code.

Our Contributions

In this paper, we propose a formal framework for reason-
ing about renaming in a significant subset of the OCaml
language. We define an abstract semantics for programs in
this subset, which captures particular aspects of the struc-
ture of programs relevant for renaming value bindings. This
comprises name-invariant information about binding struc-
ture and dependencies between value binding constructs.
We then define correctness of renamings in terms of the
preservation of this structure. We show that our semantics
constitutes a sensible abstraction by proving that it is sound
with respect a denotational semantics of the operational be-
haviour of programs. We use our semantics to develop a
theory of renaming, in which we characterise correct renam-
ings in a natural and intuitive way and prove that they enjoy
desirable (de)composition properties. Finally, we have built
a prototype refactoring tool for the full OCaml language
based on the concepts elucidated by our framework. We
have evaluated our tool on two large real-world codebases.

We have formalised our framework and some of the renam-
ing theory in the Coq proof assistant [38]. This is included as
supplementary material with our submission. Results which
have not yet been proved are marked as conjectures. We have
also included as supplementary material an appendix con-
taining a proof sketch of the adequacy result in section 5, and
a high-level elaboration of proofs for the renaming theory.
While the paper describes the work in the context of

OCaml modules, the approach can be used to understand
aspects of (re)naming in other languages, such as Haskell
(classes and instances), and Java (interfaces).

PaperOutline. In section 2, we describe the subset of OCaml
that we study, and formally define operations that carry out
renaming. We then present our abstract renaming semantics
in section 3, before developing a formal theory of renaming
in section 4. Section 5 shows that our renaming semantics
is sound with respect to a denotational model of the oper-
ational behaviour of our calculus. In section 6 we describe
our prototype refactoring tool and experimental evaluation.
Section 7 surveys related work and section 8 concludes.

2 An OCaml Module Calculus

The subset of OCaml for which we build our formal theory is
defined in fig. 1. It extends the calculus considered in [19, 20]
and consists, essentially, of a two-level lambda calculus: the
‘core’ level defines basic values of the language (e.g. func-
tions), whereas the other comprises the module system. The
module system contains structures, functors, and module
types (with module constraints and destructive module sub-
stitutions), along with include statements. Since value types
do not interact with the renaming that we consider, we do
not include a language for defining them. Thus, in order for
our calculus to count as valid actual OCaml code, we use
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Module Paths Extended Module Paths Value Expressions Programs

p F x | p.x q F x | q.x | q(q) e F v | p.v | let v = e in e | fun v -> e | e e P F e | module x = m ;; P

Module Types M F t | p.t | sig S end | functor (x :M) -> M | M with module x = q | M with module x := q

Signature Body S F ε | D ;; S Signature Components D F val v : _ | module x :M | module type t | module type t = M | include M

Module Expressions m F p | struct s end | functor (x :M) -> m | m (m) | m :M

Structure Body s F ε | d ;; s Structure Components d F let v = e | module x = m | module type t = M | include m

Figure 1. Syntax of a core calculus for OCaml with modules.

OCaml’s underscore syntax for anonymous type variables in
value declarations in signatures, e.g. sig val foo : _ end.

Other features of OCaml’s module system that we do
not model, but which nonetheless interact with renaming,
include: (local) open statements; recursive and first-class
modules; module type extraction; and type-level module
aliases. The first three should only require straightforward
extensions of the approach we describe in this paper. Mod-
elling type-level aliases correctly is more challenging, as they
interact non-trivially with module type constraints [2].

We have assumed (disjoint) sets M, T , and V of module,
module type, and value identifiers, respectively. These are
ranged over by x , t , andv , respectively, and we use ι to range
over the set I =M+T +V of all identifiers. In realOCaml,
both module identifiers and module type identifiers belong
to the same lexical class. However, it will be convenient to
distinguish them in our formalism. In any case it is syntacti-
cally unambiguous when such an identifier acts as a module
identifier and when it acts as a module type identifier; thus
we do not lose any generality in making this distinction.

2.1 Renaming Operations

To formalise the notion of carrying out renaming, we will
take (fragments of) programs to be abstract syntax trees
(ASTs). It will be convenient for us to consider ASTs as func-
tions over some set L of locations (ranged over by ℓ) re-
turning local syntactic information. That is, for locations
denoting internal nodes of the AST the function maps to
the locations of the roots of the child subtrees and indicates
which compound syntactic production is applied. For lo-
cations denoting leaves the function maps to the relevant
identifier or constant. We will also assume that there is some
null location ⊥ ∈ L that does not denote any location in
any AST. This will be used by our semantics to indicate that
a reference does not resolve to anything in a program. Al-
though ASTs impose additional hierarchical structure on
locations, we leave this implicit and do not further specify
their concrete nature.

Definition 1. One program (fragment) σ ′ is the result of
renaming another such σ , when: (i) dom(σ ) = dom(σ ′);
(ii) σ (ℓ) ∈ V ⇔ σ ′(ℓ) ∈ V; and (iii) if σ (ℓ) < V then

σ (ℓ) = σ ′(ℓ). In this case, we call the pair (σ ,σ ′) a renaming
and write σ ↪→ σ ′.

That is, renaming is only allowed to replace value iden-
tifiers by other value identifiers, and must otherwise leave
the program (fragment) unchanged.
We now define a number of syntactic concepts that will

be useful in describing the action of renamings. Firstly, we
consider the notion of the footprint of a renaming. This is all
the locations in the program that are affected, or changed,
by the renaming.

Definition 2 (Footprints). The footprint φ(σ ,σ ′) of a re-
naming σ ↪→ σ ′ is defined to be the set of locations (neces-
sarily in both σ and σ ′) that are changed by the renaming:
φ(σ ,σ ′) = {ℓ | ℓ ∈ dom(σ ) ∧ σ (ℓ) , σ ′(ℓ)}. We write
σ

ℓ
↪→ σ ′ when ℓ is in the footprint of the renaming, and

σ
v/ℓ
↪→ σ ′ when moreover σ ′(ℓ) = v .

A general problem we are interested in is the following:
given the location ℓ of some identifier in a program P and
an identifier v that we wish to rename it to, can we pro-
duce a program P ′ such that P

v/ℓ
↪→ P ′ is a valid renaming?

Moreover, we are usually interested in finding such a P ′ that
also minimises the footprint of the renaming. One purpose
of the semantics that we define in section 3 is to enable us
to provide solutions to this problem, as well as an effective
abstraction of what constitutes validity for renaming.

Besides footprints, we are also interested in what we call
the dependencies of a renaming. These are all the binding
declarations modified by a renaming. In both the following
definition and when presenting example syntax below, we
will use subscripts on identifiers to indicate their unique
position in the AST. In particular, numeric subscripts should
not be taken to be part of the identifier itself.

Definition 3 (Declarations). The set decl(σ ) of (value) dec-
larations in a program (fragment) σ is the set of all loca-
tions ℓ ∈ dom(σ ) for which there exists ℓ′ ∈ dom(σ ) such
that either: σ (ℓ′) = val vℓ : _;;, σ (ℓ′) = let vℓ = e;;,
σ (ℓ′) = let vℓ = e in e ′;;, or σ (ℓ′) = fun vℓ -> e;;.

Definition 4 (Dependencies). The dependencies δ(σ ,σ ′) of
σ ↪→ σ ′ are defined by δ(σ ,σ ′) = φ(σ ,σ ′) ∩ decl(σ ).
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Intuitively, the dependencies should be the key piece of
(syntactic) information required to characterise a renaming
since we expect the remaining locations in the program that
must be renamed to be simply those references that resolve
to one of the dependencies.

We also formally define the references of a program (frag-
ment) as follows.

Definition 5 (References). The set of (value) references of
a program (fragment) σ is the set of locations ℓ ∈ dom(σ )
such that σ (ℓ) ∈ V and ℓ < decl(σ ).

Notice that both the footprint and the dependencies of
composite renamings are bounded by the footprints and
dependencies, respectively, of their individual component
renamings.

Proposition 1. For renamings σ ↪→ σ ′ and σ ′ ↪→ σ ′′:
(i) φ(σ ,σ ′′) ⊆ φ(σ ,σ ′) ∪ φ(σ ′,σ ′′).
(ii) δ(σ ,σ ′′) ⊆ δ(σ ,σ ′) ∪ δ(σ ′,σ ′′).

3 A Static Semantics for Renaming

In this section, we define a set-theoretic semantics for pro-
grams in our calculus that will allow us to reason about
renaming values. The entities that comprise the meaning of
a program are sets of (possibly nested) tuples of elements.
Note that this allows us to also talk about functions, since
these can be described by sets of ordered pairs. The semantics
jointly describes binding resolution and dependency infor-
mation in a name-invariant manner (using AST locations),
and represents name-relevant information separately.
In the following presentation, we use standard notation

for function update: i.e. f [a 7→ b] denotes the function that
behaves like f except that f (a) = b. f [a 7→ b | a ∈ A]
denotes the function that behaves like f except that f (a) = b
for all a ∈ A, and f \ A the (partial) function that behaves
like f but only has domain dom(f ) \A.

3.1 Semantic Elements

Our abstract semantics will consist of the following entities.

Binding Resolution is a function that maps the locations
of uses of identifiers to binding instances of identifiers.

Definition 6 (Binding resolution). A binding resolution
function↣ is a partial function between locations (we as-
sume it does not map the null location ⊥). We write ℓ↣ ℓ′
instead of↣(ℓ) = ℓ′, and say that ℓ resolves to ℓ′.

The idea is that locations in the domain of the function
will represent precisely the references in a program, and the
function will describe the declaration that each reference
resolves to.

Syntactic Characteristics that are captured by our seman-
tics comprise the identifiers that are found at given locations.

This allows for the locations of binding instances of like
identifiers to be related (cf. section 3.2 below).

Definition 7. A syntactic reification function ρ : L ⇀ I

is a partial mapping from locations to identifiers (and we
assume that ρ does not map the null location ⊥). We write
domV(ρ) to denote the set {ℓ | ρ(ℓ) ∈ V}.

We can view syntactic reification functions as capturing
a restricted view of ASTs, giving information only about
those leaves that contain identifiers. The syntactic reification
function can be used to give additional information, over and
above the binding resolution function, about the declarations
in a program (specifically, those which are never referenced).

Value Extensions capture sets of declarations that are all
different facets of the same logical concept modelled in the
program. For example, a program may contain many differ-
ent functions named compare that act on values of various
different data types, which might be related through the use
of different signatures declaring values named compare, or
the application of various functors to different modules. Al-
though the different declarations may be distributed widely
throughout the program, they all model a single concept
or entity in the mind of the programmer or architecture of
the system. These entities are high-level abstractions en-
coded via the global structure of program. When we rename
a declaration, we must rename all parts of the program that
constitute the logical entity of which it is part. The difficulty
inherent in renaming in OCaml arises since these high-level
entities are not necessarily immediately evident, nor neces-
sarily localised in the source code.
We call such collections of declarations the extension1 of

a high-level program abstraction. Ultimately, the extension
is modelled by an equivalence class. However the structural
relationships between the elements of an extension are more
fine-grained and it is these that we capture, using a binary
relation that we call a ‘kernel’. Taking the reflexive, sym-
metric and transitive closure of this kernel results in the
equivalence relation whose equivalence classes we take to
model extensions.

Definition 8. A value extension kernel E is any binary
relation on locations. Ê denotes the reflexive, symmetric and
transitive closure of E.

For a location ℓ, we denote the Ê-equivalence class contain-
ing ℓ by [ℓ]Ê. We also denote by L

/Ê the quotient of L by Ê,
i.e. the partitioning of the set of locations into Ê-equivalence
classes.
The notion of value extension will allow us to carry out

renaming correctly by capturing the high-level, global struc-
tures present in a program. This is expressed in conjecture 2
below.
1This is by analogy with Frege’s development and use of this term within
the Logicist philosophical programme.
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module type Stringable = sig
val to_string : _

end
module Pair(X : Stringable)(Y : Stringable) = struct

let to_string (x, y) =
(X.to_string x) ^ " " ^ (Y.to_string y)

end
module Int = struct

let to_string i = int_to_string i
end
module String = struct

let to_string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P.to_string (0, ("!=", 1))) ;;

Figure 2. Graphical representation of the semantics.

To give an intuition as to how these elements are used,
we show in fig. 2 a visual representation of the binding res-
olution function and value extension kernel that would be
derived for the example in section 1. The binding resolution
mappings are depicted using dashed arrows, and pairs in the
value extension kernel by solid arrows.

3.2 Semantic Descriptions

In constructing the semantics of programs, we will need to
keep track of the binding structure of modules and mod-
ule types. We do so using semantic descriptions, which cap-
ture the locations of binding instances of identifiers and the
nested structure of modules and module types. We distin-
guish two kinds of semantic descriptions: structural descrip-
tions describe structures and signatures, while functorial
descriptions describe functors and functor types.

Definition 9 (Semantic descriptions). Semantic descrip-
tions, ranged over by ∆, are objects defined inductively as
follows:
– A component is either: (i) a location ℓ; or (ii) a pair of the
form (ℓ,∆).

– A semantic description is either: (i) a set of components,
in which case we call it structural; or (ii) a tuple of the
form ((ℓ,∆),∆′), in which case we call it functorial.

We write D for the set of all semantic descriptions. Addi-
tionally, we use D to range over structural descriptions only
and will usually write functorial descriptions ((ℓ,∆),∆′) as
(ℓ:∆)�∆′. We write ⌊D⌋ to denote the set {ℓ | ℓ ∈ D}.

Basic components, comprising of simply a location, cap-
ture the locations of instances of identifiers bound to values.
Components of the form (ℓ,∆) represent subcomponents
with further structure (i.e. sub-modules and sub-module
types), along with the location of the instance of the iden-
tifier that they are bound to. Structural descriptions, which
are sets of such components, thus describe the binding struc-
ture of structures and signatures. Functorial descriptions

(ℓ:∆)�∆′ capture that of functors and functor types: the left-
hand member ℓ:∆ captures the location of the parameter of
the functor or functor type, along with a description of its de-
clared type; the right-hand member of the pair, ∆′, describes
the body.

We now define some operations on semantic descriptions
that will be used to define the semantics of programs. In the
following definitions, when we write ρ(ℓ) for a reification
function ρ and a location ℓ, we mean this to also assert that
ρ is defined on ℓ.

Superposition. We define a family of superposition opera-
tions ⊕ρ on structural descriptions, parameterised by syn-
tactic reification functions, that selectively combine the ele-
ments of the two descriptions based on syntactic informa-
tion about locations contained in the reification function.
The purpose of this is to sequentially combine the semantic
description of two structure or signature fragments. In par-
ticular, it is used to model the effect of include statements.

Definition 10 (Description Superposition). The superposi-
tion operation ⊕ρ on structural descriptions is defined by:

D ⊕ρ D ′ = D ′ ∪ {ℓ | ℓ ∈ D ∧ ∀ℓ′ ∈ D ′. ρ(ℓ) , ρ(ℓ′)}

∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ∀(ℓ′,∆′) ∈ D ′. ρ(ℓ) , ρ(ℓ′)}

For example, consider the following modules.

module A = struct let foo1 = . . .;; let bar2 = . . .;; end
module B = struct include A let bar3 = . . .;; end

A semantic description of the module A consists of the set
DA = {1, 2}, while the remainder of the body of module B
after the include statement consists of the set Dbody = {3}.
To form a description of the module B, we can superpose DA

and Dbody with respect to the obvious reification function
ρ that maps location 1 to foo, and locations 2 and 3 to bar.
That is DB = DA ⊕ρ Dbody = {1, 3}. Here, the location 3 from
Dbody is chosen over 2 from DA since ρ maps them both to
the same identifier.

Join. We define a family of join operations ⊗ρ on semantic
descriptions, parameterised by syntactic reification func-
tions, that each produce a value extension kernel from their
input descriptions. The purpose of this operation is to ex-
tract the information about value extensions that is induced
by the association of a module with a module type, either
through an explicit module type annotation (m :M) or via a
functor application (m1(m2)).

Definition 11 (Description Join). The description join op-
eration ⊗ρ is a binary operation on descriptions producing a
value extension relation and is defined inductively as follows:

D1 ⊗ρ D2 = {(ℓ1, ℓ2) | ℓ1 ∈ D1 ∧ ℓ2 ∈ D2 ∧ ρ(ℓ1) = ρ(ℓ2)}

∪ {(ℓ1, ℓ2) | ∃(ℓ,∆1) ∈ D1, (ℓ
′,∆2) ∈ D2.

ρ(ℓ) = ρ(ℓ′) ∧ (ℓ1, ℓ2) ∈ ∆1 ⊗ρ ∆2}
5
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(ℓ1:∆1)�∆′
1 ⊗ρ (ℓ2:∆2)�∆′

2 = (∆1 ⊗ρ ∆2) ∪ (∆′
1 ⊗ρ ∆′

2)

∆ ⊗ρ ∆′ = ∅ otherwise

To illustrate this, consider the functor from the example in
section 1.

module type Stringable = sig val to_string1 : _ ;; end
module Pair = functor (X2 : Stringable) ->

functor (Y3 : Stringable) ->
struct let to_string4 = fun . . .;; end

The Stringable module type is described by DStringable =

{1}. For the Pair functor, our semantics constructs the de-
scription DPair = (2:DStringable)�((3:DStringable)�{5}). Ap-
plications of functors induce dependencies between the dec-
larations in the type of the parameter, and corresponding
bindings in the module used as the argument. These depen-
decies are computed by the join operation. Thus, for modules

module Int = struct let to_string5 = fun . . .;; end
module String = struct let to_string6 = fun . . .;; end

with descriptionsDInt = {5} andDString = {6}, respectively,
an application Pair(String)(Int) induces dependencies
DStringable ⊗ρ DString = {(1, 6)} and DStringable ⊗ρ DInt =

{(1, 5)}. Here, again, ρ is the obvious reification function
(mapping 1 to to_string, 2 to X, etc.).

Modulation. We define a family of operations▶ρ on seman-
tics descriptions, also parameterised by a syntactic reification
function, that produce another semantic description. This
operation will be used to model how the description of a
module is updated by a module type annotation.

Definition 12 (Description Modulation). The description
modulation operation ▶ρ is a binary operation on semantic
descriptions defined inductively as follows:

D ▶ρ D ′ = {ℓ | ℓ ∈ D ∧ ∃ℓ′ ∈ D ′. ρ(ℓ) = ρ(ℓ′)}

∪ {ℓ′ | ℓ′ ∈ D ′ ∧ ∀ℓ ∈ D. ρ(ℓ) , ρ(ℓ′)}

∪ {(ℓ,∆ ▶ρ ∆′) | (ℓ,∆) ∈ D ∧

∃ℓ′. (ℓ′,∆′) ∈ D ′ ∧ ρ(ℓ) = ρ(ℓ′)}

∪ {(ℓ′,∆′) | (ℓ′,∆′) ∈ D ′ ∧ ∀(ℓ,∆) ∈ D. ρ(ℓ) , ρ(ℓ′)}

(ℓ:∆1)�∆2 ▶ρ (ℓ′:∆′
1)�∆′

2 = (ℓ:(∆1 ▶ρ ∆′
1))�(∆2 ▶ρ ∆′

2)

∆ ▶ρ ∆′ = ∅ otherwise

For example, consider the following module type, which
is a weakening of the type of the Pair functor considered
above.

module type Stringable2 = sig
val to_string7 : _ ;; val from_string8 : _ ;; end

module type WeakPair =
functor (X9 : Stringable2) ->

functor (Y10 : Stringable2) -> sig end

DWeak = (9:DStringable2)�((10:DStringable2)�∅) describes the
module type WeakPair, where DStringable2 = {7, 8}. To de-
scribe the module M = Pair : WeakPair, we use the result

of the applying the modulation operation.

DM = DPair ▶ρ DWeak = (2:{1, 8})�((3:{1, 8})�∅)

Notice that the result type has been restricted, but the types
of the functor parameters in the original DPair description
have been augmented by the additional from_string decla-
rations (location 8) in the types of the parameters in DWeak.
Here, we intend that ρ has been updated with new map-
pings reflecting the identifiers occurring in Stringable2
and WeakPair above.
We also define a family of selective modulation opera-

tions that modulate only certain elements of a structural
description. This will be used to model the effect of a module
constraint on a module type

Definition 13 (Selective Modulation). The selective mod-
ulation operation is a binary operation ∆ ◀ρ (x :∆′) on se-
mantic descriptions with respect to a module identifier, and
is defined inductively as follows:

D ◀ρ (x :∆′) = {ℓ | ℓ ∈ D} ∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ρ(ℓ) , x}

∪ {(ℓ,∆ ▶ρ ∆′) | (ℓ,∆) ∈ D ∧ ρ(ℓ) = x}

(ℓ:∆1)�∆2 ◀ρ (x :∆′) = ∅

For example, suppose we have the following module type.
module type Set = sig
module Elt11 : Stringable ;;
val empty12 : _ ;;

end

Consider also the following module.
Int2 = struct include Int;; let from_string13 = . . .;; end

These can be described by DSet = {12, (11,DStringable)} and
DInt2 = {5, 13}. To compute the description of the module
type given by IntSet = Set with module Elt = Int2we
use selective modulation:

DIntSet = DSet ◀ρ (Elt : DInt2)

= {12, (11, (DStringable ▶ρ DInt2))}

= {12, (11, {1, 13})}

Filtering. Lastly, we define an operation that removes el-
ements from a structural description corresponding to a
particular name, according to a given syntactic reification
function. This will be used to model the effect of a destructive
module substitution on a module type.

Definition 14 (Description Filtering). The function \ρ on
semantic descriptions and (module) identifiers is defined by
cases as follows:

D \ρ x = {ℓ | ℓ ∈ D} ∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ρ(ℓ) , x}

(ℓ:∆)�∆′ \ρ x = ∅

For example, to compute the description of the module
type given by IntSet2 = Set with module Elt := Int2
we use filtering: DIntSet2 = DSet \ρ Elt = {12}.

6
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3.3 Semantic Environments

When constructing the semantics of programs, we will also
need to keep track of the binding locations and descriptions
of bound values, modules andmodule types.We do this using
an environment, which is a pair (ΓV, ΓM) of functions ΓV :
V → L and ΓM : M∪T → D that map value identifiers to
the location in the program context to which they are bound,
and map module and module type identifiers to semantic
descriptions of the module or module type, respectively to
which they are bound. We also require ΓV to be injective on
L \ {⊥}, i.e. ΓV(v) = ΓV(v ′) , ⊥ ⇒ v = v ′.
For notational convenience, we will write Γ(v), Γ(t), and

Γ(x) for ΓV(v), ΓM(t), and ΓM(x), respectively. Similarly,
we will write Γ[v 7→ ℓ], Γ[t 7→ ∆], and Γ[x 7→ ∆] for
(ΓV[v 7→ ℓ], ΓM), (ΓV, ΓM[t 7→ ∆]), and (ΓV, ΓM[x 7→ ∆]),
respectively. Γ⊥ will denote the environment consisting of
the functions that map every value identifier to the null lo-
cation, and every module and module type identifier to the
empty structural description (i.e. the empty set).

We say that a structural description D is proper for a reifi-
cation function ρ when it satisfies: (i) ρ(ℓ) ∈ V for all ℓ ∈ D;
(ii) ρ(ℓ) ∈ M ∪ T for all (ℓ,∆) ∈ D; and (iii) when ℓ, ℓ′ ∈ D
or (ℓ,∆), (ℓ′,∆′) ∈ D for distinct locations ℓ and ℓ′, then
ρ(ℓ) , ρ(ℓ′). That is, each location in D corresponds to a
unique identifier under ρ. In this case, we may treat it like a
partial semantic environment and combine it with an exist-
ing environment Γ (written Γ +ρ D) as follows:

(Γ +ρ D)(ι) =


ℓ if ℓ ∈ D and ρ(ℓ) = ι

∆ if (ℓ,∆) ∈ D and ρ(ℓ) = ι

Γ(ι) otherwise

3.4 Semantics of Programs

We will interpret programs as tuples (↣,E, ρ) comprising a
binding resolution function, a value extension kernel, and a
syntactic reification function. We will use Σ to range over
such tuples. We may also write Σ↣, ΣE, and Σρ to denote
the individual respective components of the semantics Σ.
To give the semantics of programs, we define two sorts

of judgement, Σ; Γ ⊢ σ ⇝ Σ′ and Σ; Γ ⊢ σ ⇝ (∆, Σ′), which
specify how the syntactic fragment σ extends the seman-
tics Σ of a program context, described by Γ, to result in the
semantics Σ′. The former sort of judgement applies when
σ is a value expression, or a program (i.e. some number of
module bindings followed by a value expression). The latter
applies when σ is a module expression, module type expres-
sion, or the body of a structure or signature; in which case
the judgement also derives a semantic description of σ .

The semantic judgements are defined inductively using the
rules in fig. 3 below. They employ the following shorthand
notation for specifying updates to Σ = (↣,E, ρ).

– Σ[ℓ 7→ ι] stands for (↣,E, ρ[ℓ 7→ ι]).
– Σ[ℓ 7→ (ι, ℓ′)] stands for (↣[ℓ 7→ ℓ′],E, ρ[ℓ 7→ ι]).

– Σ[∆1 ⊗ ∆2] stands for (↣,E ∪ (∆1 ⊗ρ ∆2), ρ).
– D ⊕Σ D ′ stands for D ⊕ρ D ′.
– ∆ ▶Σ ∆′ stands for ∆ ▶ρ ∆′, and ∆ ◀Σ (x :∆′) stands
for ∆ ◀ρ (x :∆′).

– ∆ \Σ x stands for ∆ \ρ x .
Figure 3 elides the rules for standard module paths, since ex-
tended module paths are a strict superset of these. Moreover,
for standard module paths, the judgement Σ; Γ ⊢ p ⇝ ∆ is
used as a shorthand since, as can be straightforwardly deter-
mined, standard module paths do not update the semantics
(although extended module paths, i.e. containing functor ap-
plications, do update the value extension kernel). We denote
by Σ⊥ the empty semantics, i.e. the tuple consisting of the
empty binding resolution function and syntactic reification
functions and empty value extension kernel.

Under certain conditions (which we elide, but elaborate in
the appendix), the semantics of fig. 3 are deterministic. Thus
they allow us to interpret programs.

Definition 15 (Semantics of programs). We define fami-
lies of (partial) interpretation functions JσKΣ;Γ and DΣ;Γ(σ ),
indexed by pairs of semantics Σ and environments Γ, that
return (when they exist) the unique Σ′ and ∆, respectively,
such that Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝ (∆, Σ′) holds. We
write JσK to mean JσKΣ⊥;Γ⊥ .

For a program P with JPK = Σ, we will write↣P , EP , and
ρP to mean Σ↣, ΣE, and Σρ respectively.
The semantics naturally captures the syntactic informa-

tion in a program pertaining to value identifiers.

Proposition 2. If JPK is defined then ref(P) = dom(↣P ) and
decl(P) = domV(ρP ) \ dom(↣P ).

An important point to note is that, even assuming an un-
typed value language, our semantics does not guarantee the
well-typedness of programs.We consider this a feature rather
than a bug since we see issues of renaming as orthogonal to
type safety. Indeed, it is often desirable to be able to carry
out renaming on incomplete (ill-typed) programs, and our
semantics facilitates this. On the other hand, we can pre-
serve well-typedness during renaming since the semantics
captures the information required for renaming to also occur
within module types. This also allows us to properly reason
about renaming with respect to encapsulation, as illustrated
by the following example.

module A = struct let foo = . . .;; let bar = . . .;; end
module B = struct

include A : sig val foo : _ end ;;
let bar = . . . ;;

end

The include of module A in B is restricted by a module
type, which serves to hide the fact that A contains a binding
of bar. Thus, the binding of bar given in module B does
not introduce any shadowing. The result is that we can re-
name A.bar and B.bar independently, whereas otherwise

7
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(Extended) Module Paths

Σ; Γ ⊢ x ⇝ (Γ(x ), Σ)

Σ; Γ ⊢ q ⇝ (D , Σ′)
(∃ℓ. Σ′ρ (ℓ) = x ∧ (ℓ, ∆) ∈ D)

Σ; Γ ⊢ q.x ⇝ (∆, Σ′)

Σ; Γ ⊢ q1 ⇝ ((ℓ:∆1)�∆2, Σ
′′) Σ′′; Γ ⊢ q2 ⇝ (∆′

1, Σ
′)

Σ; Γ ⊢ q1 (q2)⇝ (∆2, Σ
′[∆1 ⊗ ∆′

1])

Value Expressions

Σ; Γ ⊢ vℓ ⇝ Σ[ℓ 7→ (v , Γ(v))]

Σ; Γ ⊢ p ⇝ D
(Σρ (ℓ′) = v ∧ ℓ′ ∈ D)

Σ; Γ ⊢ p.vℓ ⇝ Σ[ℓ 7→ (v , ℓ′)]

Σ; Γ ⊢ p ⇝ D
(∀ℓ′ ∈ D . Σρ (ℓ

′) , v )
Σ; Γ ⊢ p.vℓ ⇝ Σ[ℓ 7→ (v , ⊥)]

Σ; Γ ⊢ e1 ⇝ Σ′′ Σ′′[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ e2 ⇝ Σ′

Σ; Γ ⊢ let vℓ = e1 in e2 ⇝ Σ′

Σ[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ e ⇝ Σ′

Σ; Γ ⊢ fun vℓ -> e ⇝ Σ′

Σ; Γ ⊢ e1 ⇝ Σ′′ Σ′′; Γ ⊢ e2 ⇝ Σ′

Σ; Γ ⊢ e1 e2 ⇝ Σ′

Signature Bodies

Σ; Γ ⊢ ε ⇝ (∅, Σ)

Σ[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ S ⇝ (D , Σ′)

Σ; Γ ⊢ val vℓ : _;; S ⇝ ({ℓ } ⊕Σ′ D , Σ′[{ℓ } ⊗ D])

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ[x 7→ ∆] ⊢ S ⇝ (D , Σ′)

Σ; Γ ⊢ module xℓ :M;; S ⇝ ({(ℓ, ∆)} ⊕Σ′ D , Σ′)

Σ; Γ ⊢ M ⇝ (D , Σ′′) Σ′′; Γ +Σ′′ρ D ⊢ S ⇝ (D′, Σ′)
(D proper for Σ′′ρ )

Σ; Γ ⊢ include M;; S ⇝ (D ⊕Σ′ D′, Σ′[ ⌊D ⌋ ⊗ D′])

Σ[ℓ 7→ t ]; Γ[t 7→ ∅] ⊢ S ⇝ (D , Σ′)

Σ; Γ ⊢ module type tℓ;; S ⇝ ({(ℓ, ∅)} ⊕Σ′ D , Σ′)

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ t ]; Γ[t 7→ ∆] ⊢ S ⇝ (D , Σ′)

Σ; Γ ⊢ module type tℓ = M;; S ⇝ ({(ℓ, ∆)} ⊕Σ′ D , Σ′)

Module Types

Σ; Γ ⊢ t ⇝ (Γ(t ), Σ)

Σ; Γ ⊢ p ⇝ D (
∃ℓ. Σρ (ℓ) = t

∧ (ℓ, ∆) ∈ D

)
Σ; Γ ⊢ p.t ⇝ (∆, Σ)

Σ; Γ ⊢ S ⇝ (∆, Σ′)

Σ; Γ ⊢ sig S end⇝ (∆, Σ′)

Σ; Γ ⊢ M1 ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ[x 7→ ∆] ⊢ M2 ⇝ (∆′, Σ′)

Σ; Γ ⊢ functor (xℓ :M1) -> M2 ⇝ ((ℓ:∆)�∆′, Σ′)

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ ⊢ q ⇝ (∆′, Σ′)

Σ; Γ ⊢ M with module xℓ = q ⇝ (∆ ◀Σ′ (x :∆′), Σ′[∆ ⊗ {(ℓ, ∆′)}])

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ ⊢ q ⇝ (∆′, Σ′)

Σ; Γ ⊢ M with module xℓ := q ⇝ (∆ \Σ′ x , Σ′[∆ ⊗ {(ℓ, ∆′)}])

Structure Bodies

Σ; Γ ⊢ ε ⇝ (∅, Σ)

Σ; Γ ⊢ e ⇝ Σ′′ Σ′′[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ s ⇝ (D , Σ′)

Σ; Γ ⊢ let vℓ = e;; s ⇝ ({ℓ } ⊕Σ′ D , Σ′[{ℓ } ⊗ D])

Σ; Γ ⊢m ⇝ (D , Σ′′) Σ′′; Γ +Σ′′ρ D ⊢ s ⇝ (D′, Σ′)
(D proper for Σ′′ρ )

Σ; Γ ⊢ include m;; s ⇝ (D ⊕Σ′ D′, Σ′[ ⌊D ⌋ ⊗ D′])

Σ; Γ ⊢m ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ[x 7→ ∆] ⊢ s ⇝ (D , Σ′)

Σ; Γ ⊢ module xℓ = m;; s ⇝ ({(ℓ, ∆)} ⊕Σ′ D , Σ′)

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ t ]; Γ[t 7→ ∆] ⊢ s ⇝ (D , Σ′)

Σ; Γ ⊢ module type tℓ = M;; s ⇝ ({(ℓ, ∆)} ⊕Σ′ D , Σ′)

Module Expressions and Programs

Σ; Γ ⊢ s ⇝ (∆, Σ′)

Σ; Γ ⊢ struct s end⇝ (∆, Σ′)

Σ; Γ ⊢m ⇝ (∆1, Σ
′′) Σ′′; Γ ⊢ M ⇝ (∆2, Σ

′)

Σ; Γ ⊢m :M ⇝ (∆1 ▶Σ′ ∆2, Σ
′[∆1 ⊗ ∆2])

Σ; Γ ⊢m1 ⇝ ((ℓ:∆1)�∆2, Σ
′′) Σ′′; Γ ⊢m2 ⇝ (∆′

1, Σ
′)

Σ; Γ ⊢m1 (m2)⇝ (∆2, Σ
′[∆1 ⊗ ∆′

1])

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ[x 7→ ∆] ⊢m ⇝ (∆′, Σ′)

Σ; Γ ⊢ functor (xℓ :M) -> m ⇝ ((ℓ:∆)�∆′, Σ′)

Σ; Γ ⊢m ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x ]; Γ[x 7→ ∆] ⊢ P ⇝ Σ′

Σ; Γ ⊢ module xℓ = m;; P ⇝ Σ′

Figure 3. The abstract renaming semantics of the OCaml calculus.

we would consider the latter to shadow the former and thus
have to rename both together to preserve binding structure.
A key feature of (module) types is that they should express
such encapsulation properties.

4 Characterising Renaming

The primary purpose of our semantics is to distinguish ‘cor-
rect’ renamings from ‘incorrect’ ones. For example, given
some declaration ℓ in program P and a new identifier v , it

might seem that P ′ = P[ℓ′ 7→ v | ℓ′ = ℓ ∨ ℓ′↣P ℓ] would
be a good candidate for forming a minimal, valid renaming.
That is, rename the identifier at location ℓ to v , as well as
the identifiers at all the locations ℓ′ that resolve to ℓ. As
discussed in section 1 this is not always sufficient, and in
general we find that we should modify multiple declarations
and their associated references.

The first step, therefore, is to specify which renamings pre-
serve meaning as captured by our semantics. The meaning

8
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that we are interested in is name-invariant binding structure,
which we capture at the semantic level via the following
equivalence relations.

Definition 16 (Semantic Equivalence). We define the fol-
lowing equivalences on semantics and environments:

• Σ ∼ Σ′ iff Σ↣ = Σ′
↣, ΣE = Σ′

E, dom(Σρ ) = dom(Σ′
ρ ),

Σρ (ℓ) ∈ V ⇔ Σ′
ρ (ℓ) ∈ V , and if Σρ (ℓ) < V then

Σρ (ℓ) = Σ′
ρ (ℓ).

• Γ ∼ Γ′ iff ΓM = Γ′
M
, and ran(ΓV) = ran(Γ′

V
).

When Σ ∼ Σ′ and Γ ∼ Γ′ hold, we write (Σ, Γ) ∼ (Σ′, Γ′).

Intuitively, this equivalence relation captures when two
pairs of semantics and environments represent program con-
texts having the same binding structure regardless of the
particular value identifiers that have been used. Notice that
the equivalence relation on semantics comprises the same
conditions on the syntactic reification function as are used
to define renamings. With this equivalence we define what
it means for a renaming to be valid.

Definition 17 (Valid Renamings). We say that a renaming
σ ↪→ σ ′ is valid with respect to Σ; Γ, and write Σ; Γ ⊢ σ ↪→ σ ′,
when JσKΣ;Γ is defined, and there exists a semantics Σ′ and
environment Γ′ with (Σ′, Γ′) ∼ (Σ, Γ) such that Jσ ′KΣ′;Γ′ is
defined and JσKΣ;Γ ∼ Jσ ′KΣ′;Γ′ . When Σ⊥; Γ⊥ ⊢ σ ↪→ σ ′ holds,
then we simply say that the renaming σ ↪→ σ ′ is valid.

For whole programs, validity of renamings collapses to
the following statement.

Proposition 3. P ↪→ P ′ is valid iff JPK and JP ′K are defined
and JPK ∼ JP ′K.

Thus, to check whether a renaming is valid, it suffices to
compute the semantics of the original and renamed programs
and then check that they are equivalent. We now proceed
to explore some of the properties of valid renamings. That
is to say, we begin to outline a theory of renaming for our
OCaml calculus.
Firstly, as a basic sanity check, we note that renamings

induce an equivalence relation on programs.

Proposition 4 (Equivalences). The following properties hold:
i) P ↪→ P is a (valid) renaming (when JPK defined).
ii) If P ↪→ P ′ is a (valid) renaming, then so is P ′ ↪→ P .
iii) If P ↪→ P ′ and P ′ ↪→ P ′′ are (valid) renamings, then so

is P ↪→ P ′′.

A main objective for defining the semantics is to charac-
terise renamings semantically. The following property shows
that (up to unresolved references) a renaming is described
by its dependencies and the binding resolution function.

Conjecture 1. Suppose P ↪→ P ′ is a valid renaming, and
let L = {ℓ | ℓ ∈ δ(P, P ′) ∨ ∃ℓ′ ∈ δ(P, P ′). ℓ ↣P ℓ

′}; then
L ⊆ φ(P, P ′) and ℓ↣P ⊥ for all ℓ ∈ φ(P, P ′) \ L.

This also means checking whether a renaming is invalid
is cheaper than checking its validity, since we need only
compute the semantics of the original program. Furthermore,
the dependencies of a renaming are themselves characterised
by the extension kernel.

Conjecture 2. Let P ↪→ P ′ be a valid renaming, then δ(P, P ′)

has a partitioning that is a subset of L
/ÊP

.

The value extension kernel thus captures the dependen-
cies inherent in a renaming: for a program P , all declarations
belonging to an ÊP -equivalence class must be renamed to-
gether (along with their associated references), or none at
all. In other words, dependencies are value extensions. This
provides an alternative check for invalidity of renamings.

Given a declaration in a semantically meaningful program,
it then follows from conjectures 1 and 2 that we can uniquely
identify a lower bound for the footprint of any valid renam-
ing containing the given declaration.

Conjecture 3. For P
ℓ
↪→ P ′ a valid renaming and ℓ ∈ decl(P),

φ(P, P ′) ⊇ {ℓ′ | ℓ′ ∈ [ℓ]ÊP ∨ ∃ℓ′′ ∈ [ℓ]ÊP . ℓ
′↣P ℓ

′′}.

This is, in fact, a tight bound since we can construct a
valid renaming with exactly this footprint.

Proposition 5. Suppose JPK is defined, ℓ ∈ decl(P), and v ∈

V does not occur in P , then P ↪→ P ′ is a valid renaming, where
P ′ = P[ℓ′ 7→ v | ℓ′ ∈ [ℓ]ÊP ∨ ∃ℓ′′ ∈ [ℓ]ÊP . ℓ

′↣P ℓ
′′].

Moreover, when a valid renaming does not have a minimal
footprint, it is possible to decompose it into two, strictly
smaller valid renamings.

Conjecture 4 (Factorisation). Suppose P ↪→ P ′ is a valid
renaming, and let ℓ and ℓ′ be two distinct locations such that
ℓ ∈ φ(P, P ′) and ℓ′ ∈ φ(P, P ′), with (ℓ, ℓ′) < ÊP ; then there
exists a P ′′ such that both P ↪→ P ′′ and P ′′ ↪→ P ′ are valid,
with φ(P, P ′′) ⊂ φ(P, P ′) and φ(P ′′, P ′) ⊂ φ(P, P ′).

The reader may notice that our theory of renaming only
utilises the equivalence relations induced by value extension
kernels, rather than making any direct use of the structure of
the value extension kernel itself. Nevertheless, we propose
that our renaming theory could potentially make use of this
detailed structure. One possibility is to define a complexity
measure based on the ‘distance’ of the value extension kernel
from its equivalence closure. We leave such investigations
to future work.

5 Adequacy of the Semantics

The renaming semantics defined in section 3 leads to an
intuitive theory for characterising renaming. However, it
is also important that it constitutes a sensible abstraction
of what we understand programs really to be. That is, the
abstract semantics should be adequate, in the sense that it is
a sound abstraction of the behavioural meaning of programs.

9
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We now show that our renaming semantics is indeed ade-
quate in this sense, by proving that if two renaming-related
programs have equivalent abstract semantics then they have
the same behaviour.
The model of program behaviour we consider is a deno-

tational semantics that extends the model considered by
Leroy in [20]. Our extensions cover the additional features
of the module system incorporated by our OCaml calculus
(i.e. include statements, module types as members of struc-
tures and signatures, and module with constraints on mod-
ule types). However, we depart from that model in another
important way: our model gives a denotational meaning
to module types, which contribute towards the meaning of
programs. This is because, as discussed in section 3 above,
module types have meaning in the context of renaming. In
contrast, the model of [20] simply ignores all module types
in programs. For lack of space, we only describe the essential
differences of our denotational model compared with [20].
The appendix contains the full definitions.

We assume an interpretation, using standard results, of
value expressions (viz. lambda terms) in some domain F
containing an element wrong denoting run-time errors. We
interpret modules in a domainM satisfying:

M = D + (M→ M) +wrong
D = (V ⇀fin F) × (T ⇀fin T) × (M ⇀fin M)

where T is the set in which we interpret module types, de-
fined inductively as the set X satisfying the following:

X = D + (M × X ) × X +wrong
D = ℘fin(V) × (T ⇀fin X ) × (M ⇀fin X )

The denotational semantics of programs is given by a func-
tion L·Mθ , which interprets syntactic elements in their appro-
priate domains. As usual, it is parameterised by a denota-
tional environment θ mapping identifiers to elements of the
appropriate domain.
The interpretation of module types mirrors the way de-

scriptions of module types are constructed by our abstract
semantics. The main difference, then, between our denota-
tional semantics and that of [20] is that module type deno-
tations affect the meaning of modules. This happens in two
ways. Firstly, the denotation of a module is modified by the
denotation of a module type with which it is annotated.

Lm :MMθ = let d = LmMθ in let τ = LMMθ in d : τ
Here, we utilise a semantic operation d : τ on denotations d
and τ , which essentially inserts ‘dynamic’ type checks. For
example, if d denotes a structure containing some binding
of v but τ denotes a signature not containing a declaration
of v , then v will not be in the domain of d : τ . In the reverse
situation, v will be in the domain of d : τ , but it will return
wrong on being applied to v . This is analogous to the ap-
proach taken in gradual typing frameworks [36, 37], which
insert casts that perform such dynamic checks.

Secondly, this operation is used to insert checks on the
argument to a functor according to the module type declared
for the corresponding parameter.

Lfunctor (x :M) -> mMθ =
let τ = LMMθ in λd .LmMθ [x 7→d :τ ]

We note that, for well-typed programs, this approach should
be equivalent to the one ignoring all type annotations. Not-
withstanding, by considering a ‘dynamically typed’ model
we do not have to separately consider well-typedness.

Our abstract renaming semantics is sound with respect to
the denotational semantics defined above. We write LPM to
mean LPMθ⊥ , where θ⊥ is the environment that maps every-
thing to wrong.

Proposition 6 (Adequacy). LPM = LP ′M if P ↪→ P ′ is valid.

The converse result, completeness, does not hold. That is,
there are renamings that preserve the operational meaning
of programs, but which result in different abstract seman-
tics. This is due to the fact that, according to our semantics,
valid renamings must preserve all shadowing that occurs in
programs. For example, consider the following contrived but
nonetheless valid OCaml program.

module M = struct let foo = true let foo = 42 end
: sig val foo : bool val foo : int end ;;

M.foo ;;

Here there is shadowing in both the module expression and
the module type. According to our semantics, the only valid
renaming is the one that renames all instances of the identi-
fier foo. However, it would be sufficient (in the sense that
the result is denotationally equivalent) to rename both in-
stances in the module type, but only the latter one in the
module expression. It seems plausible that our semantics
could be refined in order to reason about those cases in
which (un)shadowing is allowed to occur, thus facilitating a
completeness result. We leave this for future work.

6 Rotor: A Refactoring Tool for OCaml
We have built a prototype refactoring tool for the OCaml
language, called Rotor (Reliable OCaml Tool for OCaml
Refactoring), that carries out renaming based on the analysis
modelled in our abstract semantics. The source code and a
pre-compiled executable are available online [5, 6].

6.1 Implementation

The aim of our implementation was to produce a tool em-
bodying proposition 5 above. That is, given a particular dec-
laration in the input source code, the tool should produce a
patch consisting of the minimal number of changes needed
to correctly enact the renaming. In handling the OCaml
language as a whole, we faced a number of challenges.

– In order to avoid having to build basic language pro-
cessing functionality from scratch, we implemented Rotor

10
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in OCaml itself. This allowed us to reuse the compiler as
a library, providing an abstract representation of the input
source code directly. OCaml’s abstract syntax data type con-
tains source code location information, which we used to
produce accurate patches describing how to apply the re-
naming. We also relied on the recently developed visitors
library [34] to automatically generate boilerplate code for
traversing and processing the abstract syntax trees. This li-
brary provides similar functionality to that found inHaskell’s
SYB [17] and Strafunski [18] libraries, or the Stratego/XT
framework [9].

– For complex, real-world codebases the wider ecosystem
and build pipeline of OCaml becomes relevant, as it intro-
duces extra layers not present in the basic language itself.
Two aspects of this were particularly relevant in implement-
ing Rotor. Firstly, OCaml has a preprocessor infrastructure
called PPX [11]. This means that, in general, the abstract
syntax that is processed by Rotor may contain elements
that do not correspond to actual source code. Moreover it is
not always straightforward to determine when this is and
is not the case, and our analysis must work on the post-
processed code in order to fully compute the information it
needs. Secondly, some build systems (e.g. dune [4]), in order
to implement packaging and namespace separation, utilise
custom mappings between the names of source files and
the names of compiled modules, cf. [21, §8.12]. Rotor must
be aware of these custom mappings to be able to produce
accurate patch information.

– The primary difficulty in implementing our analysis
was computing the binding resolution and dependency in-
formation on which our analysis is built. Since it was not
feasible to reimplement an entire binding analysis for the full
language, we again relied on the OCaml compiler as much
as possible. During type inference the compiler performs
a binding analysis, assigning each binding a unique stamp.
However, it only computes a partial view of the binding reso-
lution function of our analysis. For value identifiers qualified
by a module path (i.e. that refer to a binding inside another
module), the compiler only provides the stamp of the out-
ermost containing module whereas our binding resolution
function provides the ‘stamp’ of the value binding itself.
For this reason, Rotor approximates the abstract loca-

tions of our semantics using these logical paths. In fact, we
had to extend the notion of paths implemented by the com-
piler, since they cannot refer to subcomponents of module
types, or those of functors and their parameters. For each
reference in the program, Rotor can rely on information
provided by the compiler to determine which logical path
it resolves to. For each path, Rotor must then compute the
other paths it depends upon, i.e. which other declarations
are in its value extension. It does this by comparing path pre-
fixes whenever it encounters an include statement, module
type annotation, module type constraint, or functor appli-
cation. For example if, in analysing the dependencies of the

path M.N.foo (representing the foo value binding in the
N submodule of module M), Rotor encounters the module
binding module P = M : T, it would generate dependen-
cies on the paths P.N.foo and T.N.foo. An important point
here is that, in our semantics, the logical paths M.N.foo and
P.N.foo would denote the same (abstract) location, since
module P is bound to module M. However, according to the
information we can extract from the compiler, references
might resolve to either of the paths. Thus, Rotor must treat
them as (logically) distinct dependencies.

Rotor computes dependency information using aworklist
algorithm, beginning with a working set containing just the
path of the declaration to be renamed. For each dependency,
it analyses the codebase to compute which other paths it
depends upon, adding ones it has not previously processed
to the working set. As each dependency is processed, Rotor
also identifies all of its references and builds up the final
patch that can be applied to enact the renaming. At each
point in the analysis, Rotor checks to ensure that the new
name does not introduce shadowing, or modify any shadow-
ing that already occurs. If this is the case, Rotor fails with a
warning to the user. The renaming might also fail if Rotor
detects a declaration must be renamed that is not part of the
input source code (e.g. a library function).

6.2 Rotor in Practice

The aim of Rotor is to provide a practical tool for refactoring
“real world” OCaml code, but in doing this we have made
a number of tradeoffs between the cost of handling certain
features and the benefits that that would bring. We chose
not to support modules that use PPX, because this can give
rise to function declarations being automatically generated
during PPX preprocessing; extending Rotor to handle these
cases would be very hard, as we would need to enable it to
reason about meta-programming.
Other aspects – which lie outside core OCaml – include

module type extraction; our choice here has been to concen-
trate on a set of language features that cover all essential
aspects of the module system, such that other aspects could
be treated using similar techniques.

We evaluated Rotor on two substantial, real-world code-
bases. Firstly, Jane Street’s standard library overlay [15],
comprising 869 source files in 77 libraries. Secondly, part
of the OCaml (4.04.0) compiler itself [3] consisting of 502
source files. We analysed each codebase to extract its set of
value bindings, which we used as test cases. For each case,
we asked Rotor to rename the binding to a fresh name not
occurring in the codebase and tested the result by attempting
to re-compile.

Setting aside the cases that we do not handle, and the cases
which fail because they generate a requirement to rename an
(external) library function, at the point of writing more than
70% of the tests pass; of the remainder, some are doubtlessly

11
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due to bugs, but others are due to the presence of features of
the language so far unhandled by the system.
As well as providing test data, this exercise has demon-

strated the value of the dependency concept in practice.
Among the refactorings for the OCaml compiler, more than
thirty generate sets of dependencies of size at least 24, and
over a hundred have non-trivial sets of dependencies. These
more complex refactorings typically span multiple files, and
generate multiple patches. In summary for the compiler, in
the successful cases we have these data.

Max Mean Mode
Files 19 3.8 3
Hunks 59 5.9 3
Dependencies 35 1.6 1
Avg. Hunks/File 15.0 1.5 1.0

7 Related Work

A general survey of refactoring research up until 2004 has
been given by Mens and Tourwé [29]. Much work on refac-
toring has been carried out within the object-oriented pro-
gramming paradigm; a standard reference is [10]. Thompson
and Li have carried out a survey of refactoring tools for func-
tional languages [39] including the tools Wrangler [22, 23]
(for Erlang [7]) and HaRe [24] (for Haskell [33]). Renaming,
and perhaps refactoring generally, seems to be more difficult
in a language like OCaml with its powerful module system.
Erlang is dynamically typed, but has a flat module system,
and Haskell, whilst possessing a powerful multi-feature type
system, also does not support complex modules.

It has long been recognised that, for correctness, refactor-
ings generally require certain preconditions to hold [12]. As
we have already noted, the notion of dependency that we
describe in this paper is something other than a precondition
and seems not to have been studied before. Our approach of
constructing a semantic abstraction specifically for the pur-
pose of refactoring, as far as we know, is also novel. It bears
some similarity to work on program analysis via fact extrac-
tion. This is the approach behind the codeQuest tool [13] and,
more recently, the QL language [8] and Semmle platform
[1]. The JunGL tool [41] uses this technique in the context
of refactoring to check preconditions. However, these tools
do not consider this technique as a semantic abstraction in
a formal sense as we do. Lin and Holt consider an abstract
formalization of fact extraction [26], and consider different
notions of semantic completeness [27], but this is not tied to
any language in particular and cannot obviously be applied
to refactoring. Separately, Lin has also devised a (relational)
algebraic procedure for binding resolution in various (imper-
ative) languages, based on fact extraction [25]. Related to this
is the recent work on scope graphs for name resolution [31]
and static type checking [40]. This is a generic framework
for specifying (and checking) static semantics of languages
(including binding resolution), but does not present scope

graphs as abstractions of operational models. Menarini et
al. take a semantic approach to code review, but do not ad-
dress how semantics may guide automatic construction of
refactorings [28].

We have formally shown our renaming semantics to be an
abstraction of an operational model of our OCaml calculus,
which is an extension of the model considered in [19, 20] by
Leroy. Rossberg et al. have also given a semantics for a large
subset of OCaml and its module system via a translation
to System Fω [35]. However, since this translation requires
programs to be well-typed, we did not follow this approach.
The CakeML project [16] is a compiler stack for a large subset
of OCaml that is formalised and fully verified in the HOL4
theorem prover [14]. However, it currently contains only the
most basic form of the module system.

8 Conclusion

In this paper we have presented a framework based on an
abstract denotational semantics that allows us to reason
about the correctness of renaming value bindings within
OCaml modules. We have formally modelled a significant
subset of the OCaml core language and its module system.
Our abstract semantics allows us to characterise renamings
which do not change the operational meaning of programs,
and describe how they compose. A key concept that arose
from our analysis was that of the extension of a value binding,
this being the collection of bindings in the program that
are related via the name-aware structures of the language.
To the best of our knowledge, this is a novel concept not
previously identified in the literature. We implemented our
framework in a prototype tool called Rotor, which is able
to automatically carry out renaming on real-world OCaml
code with a significant degree of success.

Future Work. We would like to extend our approach to
cover other features of OCaml’s module system, such as
first class and recursive modules, module type extraction,
and type-level module aliases. We would also like to con-
sider renaming module and module type bindings, as well
as other kinds of refactoring. It will be interesting to see
if our notion of value extension is flexible enough to cap-
ture other language features and more complex refactorings.
Our prototype tool, Rotor, needs further development. It
is our hope that it can become an industrially useful tool
to the OCaml community. Furthermore, we would like to
investigate whether our approach can be integrated into a
mechanised formal framework, such as CakeML.
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A Proofs

Here we elaborate on the results stated in the main body of
the paper, and provide proofs of those results that are not
included in the Coq formalisation.

A.1 The Abstract Renaming Semantics

It was stated in section 3 that, under certain conditions, the
semantics are deterministic. Here, we give the formal state-
ment of this property.
We first have to define a notion of well-behavedness for

semantic descriptions and environments. Given an interpre-
tation of locations as identifiers (i.e. a syntactic reification
function), a semantic description is well-behaved when each
location in a (possibly nested) structural description corre-
sponds to an identifier that is unique within that description.
Definition 18 (Well-behaved Descriptions). We define the
subset of semantic descriptions that are well-behaved with
respect to a given syntactic reification function ρ as the
smallest set satisfying the following.
• A structural description D is well-behaved w.r.t. ρ when:

(i) ℓ ∈ D implies ℓ ∈ dom(ρ) and ρ(ℓ) ∈ V;
(ii) (ℓ,∆) ∈ D implies ℓ ∈ dom(ρ), ρ(ℓ) ∈ M ∪ T and ∆

is well-behaved w.r.t. ρ; and
(iii) if ρ(ℓ) = ρ(ℓ′) for ℓ, ℓ′ ∈ D or (ℓ,∆), (ℓ′,∆′) ∈ D,

then also ℓ = ℓ′.
• A functorial description (ℓ:∆)�∆′ is well-behaved w.r.t.
ρ when both ∆ and ∆′ are well-behaved w.r.t. ρ.

That is, a semantic description that is well-behaved for ρ is
proper for ρ ‘all the way down’.
We say that an environment Γ is well-behaved for a syn-

tactic reification function ρ when Γ(v) = ℓ implies ρ(ℓ) = v
for every ℓ , ⊥, and each ∆ι such that Γ(ι) = ∆ι (ι ∈ M∪T )
is well-behaved w.r.t. ρ. We say that an environment Γ or
semantic description ∆ is well-behaved for a semantics Σ
when it is well-behaved w.r.t. the reification function ρ for
which ρ(ι) = ℓ if and only if Σρ (ι) = ℓ and ℓ < dom(Σ↣).
We denoted by ranI(Γ) the set ran(ΓV) ∪ {ℓ | ∃∆. (ℓ,∆) ∈
ran(ΓM)}.
Lemma 5 (Determinism). For any program fragment σ , se-
mantics Σ, and environment Γ that is well-behaved for Σ and
satisfies (dom(Σρ ) ∪ ranI(Γ)) ∩ dom(σ ) = ∅, there is at most
one Σ′ and one ∆ such that Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝
(∆, Σ′).

Proof. Given in the Coq formalisation. By induction on the
definition of the semantics. In fact, we need to use a stronger
hypothesis involving the following additional invariants:
(1) Σ′ contains only locations in dom(Σρ ) and dom(σ );
(2) Γ is well-behaved also for Σ′;
(3) for judgements Σ; Γ ⊢ σ : (∆, Σ′), then ∆ is well-

behaved for Σ′; and
(4) ∆ well-behaved w.r.t. Σ implies ∆ well-behaved w.r.t.

Σ′, for all ∆. □

Thus, we specify that JσKΣ;Γ and DΣ;Γ(σ ) are only defined
when Γ is well-behaved for Σ and (dom(Σρ ) ∪ ranI(Γ)) ∩
dom(σ ) = ∅. A consequence of lemma 5 is that (when
defined) DΣ;Γ(σ ) is well-behaved w.r.t. ρ, where JσKΣ;Γ =
(↣,E, ρ).
The following property is necessary for a semantics to

correspond to an actual program fragment.

Definition 19 (Properness). A semantics Σ = (↣,E, ρ) is
called proper when it satisfies the following conditions.

(i) dom(↣) ∩ ran(↣) = ∅.
(ii) ℓ↣ ℓ′ and ℓ′ , ⊥ implies ρ(ℓ) = ρ(ℓ′).
(iii) ρ(ℓ) ∈ V , for all l ∈ dom(↣) ∪ ran(↣) with ℓ , ⊥.
(iv) ρ(ℓ) = ρ(ℓ′) ∈ V , ℓ < dom(↣) and ℓ′ < dom(↣), for

all (ℓ, ℓ′) in E.

Note that the empty semantics is trivially proper. We can
show that properness is preserved by the semantics.

Lemma6. Let Σ be proper, and environment Γ be well-behaved
for Σ; if Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝ (∆, Σ′) holds then Σ′ is
proper.

Proof. By induction on the semantic rules. Given in the Coq
formalisation. □

The semantic characterisation of the syntactically defined
references and declarations given in proposition 2 is a special
case of the following lemma. We write decl(Σ) to denote the
set domV(Σρ ) \ dom(Σ↣).

Proposition 7. If JσKΣ;Γ = Σ′ then:
(i) ref(σ ) = dom(Σ′

↣) \ dom(Σ↣).
(ii) decl(σ ) = decl(Σ′) \ decl(Σ).

Proof. By induction on the semantic rules. Given in the Coq
formalisation. □

We now justify the statement of validity for whole pro-
gram renamings.

Proposition 3. P ↪→ P ′ is valid iff JPK and JP ′K are defined
and JPK ∼ JP ′K.

Proof. Notice that trivially Γ⊥ is well-behaved for Σ⊥ and,
when restricting to pairs (Σ, Γ) such that Γ is well-behaved for
Σ, we have [(Σ⊥, Γ⊥)]∼ = {(Σ⊥, Γ⊥)}, whence the statement
follows directly from definition 17. □

We now consider some properties pertaining to the struc-
ture of the semantics and descriptions synthesised by the
semantic rules. In an abuse of notation, we will writeL(∆) to
denote the set of all locations appearing in (a subcomponent)
of ∆. For an environment Γ and identifier ι ∈ M∪T , we then
write ΓD(ι) for the description ∆ such that there exists ℓ with
Γ(ι) = (ℓ,∆), and ranD(Γ) for the set

⋃
ι∈M∪T L(ΓD(ι)).

Lemma 7. If Σ; Γ ⊢ σ ⇝ (∆, Σ′) then L(∆) ⊆ dom(σ ) ∪
ranD(Γ).
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Proof. By induction on the semantic rules. Included in the
Coq formalisation. □

Lemma 8. If Σ; Γ ⊢ σ ⇝ (∆, Σ′) then E′ \ E ⊆ L × L, for
L = dom(σ ) ∪ ranD(Γ), where E and E′ are the extension
kernels of Σ and Σ′, respectively.

Proof. By induction on the semantic rules. Included in the
Coq formalisation. □

The following concepts of inclusion, relevance and fresh-
ness for semantics are central to proving many of the results
in this paper. To express these properties, we use the fol-
lowing notation for partial functions f and д, and (binary)
relation R:

• f ⊆ д denotes that, for all x ∈ dom(f ), if f (x) = y
then д(x) = y;

• f \ д denotes the function defined by (f \ д)(x) = y
if and only if f (x) = y and either д(x) undefined or
д(x) , y;

• f ⊆ R denotes that f (x) = y only if (x,y) ∈ R.
The use of set-theoretic notation here is justified by the view
of (partial) functions as sets of mappings (i.e. pairs). Notice
that the following property holds.

Proposition 8. Suppose that f (x) = y but x < dom(f \ д),
then д(x) = y.

Proof. Suppose, for contradiction, that in fact д(x) is unde-
fined or else д(x) , y. But then from the assumption that
f (x) = y we have, by definition, that (f \ д)(x) = y, which
contradicts the assumption that x < dom(f \ д). □

The definitions of inclusion, relevance and freshness are
as follows.

Definition 20 (Inclusion). We say that Σ′ includes Σ, and
write Σ ⊆ Σ′, when the following hold: (1) Σ↣ ⊆ Σ′

↣; (2)
ΣE ⊆ Σ′

E; and (3) Σρ ⊆ Σ′
ρ . When we additionally have

ℓ ∈ dom(Σρ ) \ dom(Σ↣) implies ℓ ∈ dom(Σ′
ρ ) \ dom(Σ′

↣)

for all locations ℓ ∈ L, we say that Σ′ properly includes Σ.

Definition 21 (Relevance). For semantics Σ and Σ′, and a
set of locations L ⊆ L, we say Σ′ is relevant for L over Σ, and
write Σ′ \ Σ ⊆ L, when the following hold:

(1) Σ′
↣ \ Σ↣ ⊆ L × (L ∪ dom(Σρ ))

(2) Σ′
ρ \ Σρ ⊆ L × I

(3) Σ′
E \ ΣE ⊆ (L ∪ dom(Σρ ))

2 \ dom(Σρ )
2

Definition 22 (Freshness). We say that a set L ⊆ L of
locations is fresh for a semantics Σ = (↣,E, ρ) when the
following properties hold for all locations ℓ ∈ L:
(1) ℓ ∈ dom(↣) ∪ ran(↣) ⇒ ℓ < L
(2) (∃ℓ′. (ℓ, ℓ′) ∈ E ∨ (ℓ′, ℓ) ∈ E) ⇒ ℓ < L
(3) ℓ ∈ dom(ρ) ⇒ ℓ < L

For proper semantics, these properties are guaranteed by
the interpretation function.

Lemma 9. If JσKΣ;Γ = Σ′ with Σ proper then: (1) Σ′ properly
includes Σ; (2) Σ′ is relevant for dom(σ ) over Σ; and (3)
dom(σ ) is fresh for Σ.

Proof. Given in the Coq formalisation. The freshness prop-
erty follows fromproperness and the preconditions for JσKΣ;Γ
to be defined (cf. definition 15)—namely that dom(Σρ ) ∩
dom(σ ) = ∅. The other properties are shown by induction
on syntactic structure. □

Thus, the major utility of definitions 20 to 22 lies in the
following result.

Lemma 10. Take semantics Σ1, Σ2, Σ′
1 and Σ′

2, with a set of
locations L ⊆ L such that the following conditions hold:

• Σ1 ⊆ Σ′
1, and Σ2 ⊆ Σ′

2;
• Σ′

1 \ Σ1 ⊆ L and Σ′
2 \ Σ2 ⊆ L; and

• L is fresh for both Σ1 and Σ2.
Then Σ′

1 ∼ Σ′
2 implies that Σ1 ∼ Σ2.

Proof. Let Σ1 = (↣1,E1, ρ1), Σ2 = (↣2,E2, ρ2), with Σ′
1 =

(↣′
1,E

′
1, ρ

′
1), and Σ′

2 = (↣′
2,E

′
2, ρ

′
2). Since Σ′

1 ∼ Σ′
2, we

have by definition 16 that↣′
1 = ↣

′
2, E′1 = E′2, dom(ρ ′1) =

dom(ρ ′2), ρ ′1(ℓ) ∈ V ⇔ ρ ′2(ℓ) ∈ V , and ρ ′1(ℓ) = ρ ′2(ℓ) if
ρ ′1(ℓ) < V . We must show the following:
(↣1 =↣2): To see that↣1 ⊆ ↣2, take (ℓ, ℓ′) ∈ ↣1.

Since Σ1 ⊆ Σ′
1 it follows that ↣1 ⊆ ↣′

1, and thus that
(ℓ, ℓ′) ∈ ↣′

1. Moreover, since ↣′
1 = ↣

′
2 it then follows

that (ℓ, ℓ′) ∈ ↣′
2. Now, since L is fresh for Σ1, we have

that ℓ < L and therefore, since Σ′
2 is relevant for L over Σ2, it

follows that ℓ < dom(↣′
2\↣2). However, since we have that

(ℓ, ℓ′) ∈ ↣′
2, by proposition 8 it must be that (ℓ, ℓ′) ∈ ↣2

as required. A symmetric chain of reasoning shows that
↣2 ⊆↣1, hence we conclude.

(E1 = E2): To see that E1 ⊆ E2, take (ℓ, ℓ′) ∈ E1 and rea-
son as above that (ℓ, ℓ′) ∈ E′2. Since, L is fresh for Σ1, it
follows that neither ℓ ∈ L nor ℓ′ ∈ L. Then, since Σ′

2 is rele-
vant for L over Σ2, we have by clause (3) of definition 21 that
for any (ℓ1, ℓ2) ∈ E′2\E2 it must be that either ℓ1 ∈ L or ℓ2 ∈ L.
Thus, (ℓ, ℓ′) < E′2 \ E2. Therefore, since (ℓ, ℓ′) ∈ E′2, it then
follows by simple set-theoretic reasons that (ℓ, ℓ′) ∈ E2 as re-
quired. Again, a symmetric chain of reasoning demonstrates
that E2 ⊆ E1, hence we conclude.

(dom(ρ1) = dom(ρ2)): To see dom(ρ1) ⊆ dom(ρ2), take
ℓ ∈ dom(ρ1). Since Σ1 ⊆ Σ′

1, we have ρ1 ⊆ ρ ′1 and thus that
ℓ ∈ dom(ρ ′1). Then, since dom(ρ ′1) = dom(ρ ′2), it follows that
ℓ ∈ dom(ρ ′2). Also, ℓ < L by clause (3) of definition 22 since
L is fresh for Σ1. Thus, since Σ′

2 is relevant for L over Σ2,
we have by clause (2) of definition 21 that ℓ < dom(ρ ′2 \ ρ2).
However, since we have that ℓ ∈ dom(ρ ′2), by proposition 8
it must be that ℓ ∈ dom(ρ2) as required. A symmetric chain
of reasoning shows that dom(ρ2) ⊆ dom(ρ1), hence we con-
clude.

(ρ1(ℓ) ∈ V ⇔ ρ2(ℓ) ∈ V): Assume (ℓ,v) ∈ ρ1 for some
v ∈ V; we show that there is some v ′ ∈ V with (ℓ,v ′) ∈ ρ2.
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Since Σ1 ⊆ Σ′
1, we have ρ1 ⊆ ρ ′1 and thus that (ℓ,v) ∈ ρ ′1.

Then, since ρ ′1(ℓ) ∈ V ⇔ ρ ′2(ℓ) ∈ V , it follows that there
is some v ′ ∈ V such that (ℓ,v ′) ∈ ρ ′2. Also, ℓ < L since L
is fresh for Σ1. Therefore, since Σ′

2 is relevant for L over Σ2,
we have that ℓ < dom(ρ ′2 \ ρ2). However, since we have that
(ℓ,v ′) ∈ ρ ′2, by proposition 8 it must be that (ℓ,v ′) ∈ ρ2 as
required. A symmetric chain of reasoning shows that the
converse direction holds, hence we conclude.

(ρ1(ℓ) = ρ2(ℓ) if ρ1(ℓ) < V): Assume ρ1(ℓ) = ι and ι < V .
Since Σ1 ⊆ Σ′

1, we have ρ1 ⊆ ρ ′1 and thus that ρ ′1(ℓ) = ι.
Then, since ρ ′1(ℓ) < V implies ρ ′1(ℓ) = ρ ′2(ℓ), it follows that
ρ ′2(ℓ) = ι. Also, ℓ < L since ℓ ∈ dom(ρ1) (by assumption)
and L is fresh for Σ1. Thus, since Σ′

2 is relevant for L over Σ2,
we have by clause (2) of definition 21 that ℓ < dom(ρ ′2 \ ρ2).
However, since we have that ρ ′2(ℓ) = ι, by proposition 8 it
must be that ρ2(ℓ) = ι as required. □

This is used in the proofs of conjectures 14 and 15 and the-
orem 20 in order to infer the necessary conditions for ap-
plying the inductive hypothesis, namely relatedness of the
semantics for corresponding sub-fragments of programs.
We now show some simple properties to do with preser-

vation of properness and equivalence of semantics.

Lemma 11. Suppose {ℓ} is fresh for Σ, with ℓ , ⊥; then Σ is
proper if and only if Σ[ℓ 7→ v] is.

Proof. Immediate, by definition 19, since the only difference
between the two semantics is the mapping of ℓ to v in the
reification functions, and the freshness constraint entails
that ℓ does not occur in the binding resolution function or
the extension. □

Lemma 12. Let v,v ′ ∈ V with ℓ < dom(Σρ ), ℓ < dom(Σ′
ρ ),

ℓ < ran(Γ1), and ℓ < ran(Γ2) for ℓ , ⊥; then:
1. Σ ∼ Σ′ if and only if Σ[ℓ 7→ v] ∼ Σ′[ℓ 7→ v ′].
2. Γ1 ∼ Γ2 only if Γ1[v 7→ ℓ] ∼ Γ2[v

′ 7→ ℓ].

Proof. Immediate, by definition 16. For the case of semantics,
the result obtains because we have only updated the reifi-
cation functions with mappings to value identifiers in both
cases. For environments, we have only updated the value
identifier mappings, in each case to the same location thus
preserving the equality of the ranges. □

Lemma 13. let Σ and Σ′ be semantics and ℓ a location such
that there is no ℓ′ such that (ℓ, ℓ′) ∈ ΣE or (ℓ, ℓ′) ∈ Σ′

E; then
Σ[{ℓ} ⊗ ∆] ∼ Σ′[{ℓ} ⊗ ∆′] implies Σ ∼ Σ′, for all ∆, ∆′.

Proof. The reification and binding resolution functions are
not updated by the join operation. Thus it remains to show
that ΣE = Σ′

E. We show one direction of the inclusion; the
other is symmetric. Let E+ and E′+ be the extension ker-
nels of Σ[{ℓ} ⊗ ∆] and Σ′[{ℓ} ⊗ ∆′], respectively. Suppose
(ℓ1, ℓ2) ∈ ΣE. Since E+ = ΣE ∪ ({ℓ} ⊗Σρ ∆), thus also
(ℓ1, ℓ2) ∈ E+. Since Σ[{ℓ} ⊗ ∆] ∼ Σ′[{ℓ} ⊗ ∆′], it follows
that E+ = E′+. Therefore (ℓ1, ℓ2) ∈ E′+. Notice that ℓ1 , ℓ

since there is no ℓ′ such that (ℓ, ℓ′) ∈ ΣE. Moreover, by defini-
tion 11, all pairs in {ℓ} ⊗Σ′ρ ∆′ are of the form (ℓ, ℓ′) for some
ℓ′. Thus (ℓ1, ℓ2) < {ℓ} ⊗Σ′ρ ∆′. Since E′+ = Σ′

E ∪ ({ℓ} ⊗Σ′ρ ∆′)

it follows that we must have (ℓ1, ℓ2) ∈ Σ′
E. □

We now turn attention to the results of the renaming the-
ory. Conjecture 1 is a corollary of the following property that
we conjecture holds of our semantics. It should be possible
to prove by induction on syntactic structure.
Conjecture 14. If Σ; Γ ⊢ σ ↪→ σ ′, with JσKΣ;Γ = (↣′,E′, ρ ′),
then φ(σ ,σ ′) = U ∪ L ∪C , where:
• U ⊆ {ℓ | ℓ↣′ ⊥},
• L = {ℓ | ℓ ∈ δ(σ ,σ ′) ∨ ∃ℓ′ ∈ δ(σ ,σ ′). ℓ↣′ ℓ′}, and
• C ⊆ {ℓ | ∃ℓ′ , ⊥. ℓ′ ∈ decl(Σ) ∧ ℓ↣′ ℓ′}.

From this we can immediately derive conjecture 1 by
straightforwardly instantiating it with σ ≡ P and σ ′ ≡ P ′,
and interpreting with respect to Σ = Σ⊥ and Γ = Γ⊥. In this
case, notice that C = ∅.
Conjecture 1. Suppose P ↪→ P ′ is a valid renaming, and
let L = {ℓ | ℓ ∈ δ(P, P ′) ∨ ∃ℓ′ ∈ δ(P, P ′). ℓ ↣P ℓ

′}; then
L ⊆ φ(P, P ′) and ℓ↣P ⊥ for all ℓ ∈ φ(P, P ′) \ L.

Conjecture 2 is a corollary of the following property that
we conjecture to hold of our semantics. Again, it should be
possible to prove by induction on syntactic structure.
Conjecture 15. Let Σ1 = (↣1,E1, ρ1), Σ2 = (↣2,E2, ρ2),
such that both JσKΣ1;Γ1 and Jσ ′KΣ2;Γ2 are defined and, moreover,
JσKΣ1;Γ1 ∼ Jσ ′KΣ2;Γ2 ; if D has a partitioning P ⊆ L

/Ê1
, where

D = {ℓ | ℓ ∈ (domV(ρ1) \ dom(↣1)) ∧ ρ1(ℓ) , ρ2(ℓ)},
then also D ∪ δ(σ ,σ ′) has a partitioning P ′ ⊆ L

/Ê′ , where
JσKΣ1;Γ1 = (↣′,E′, ρ ′).

Deriving conjecture 2 from this is done by straightfor-
wardly instantiating it with σ ≡ P and σ ′ ≡ P ′, and inter-
preting with respect to Σ1 = Σ2 = Σ⊥ and Γ1 = Γ2 = Γ⊥; in
this case, notice that D = ∅.
Conjecture 2. Let P ↪→ P ′ be a valid renaming, then δ(P, P ′)

has a partitioning that is a subset of L
/ÊP

.

Proposition 5 is a corollary of the following result.
Lemma 16. Let JσKΣ;Γ ⊆ Σ′, where for Σ = (↣Σ,EΣ, ρΣ)
and Σ′ = (↣,E, ρ), with Σ and Σ′ proper; then for some given
ℓ ∈ decl(Σ′) and v ∈ V not occurring in σ or Σ′, define the
following:
• L = {ℓ′ | ℓ′ ∈ [ℓ]Ê ∨ ∃ℓ′′ ∈ [ℓ]Ê. ℓ

′↣ ℓ′′};
• σ ′ = σ [ℓ′ 7→ v | ℓ′ ∈ L ∩ dom(σ )]; and
• Σ′ = (↣Σ,EΣ, ρΣ[ℓ

′ 7→ v | ℓ′ ∈ L ∩ dom(ρΣ)]).
Furthermore, define Γ′ as follows: if there is (a necessarily
unique) v ′ such that Γ(v ′) ∈ [ℓ]Ê then Γ′ behaves as Γ except
Γ′(v) = Γ(v ′) and Γ′(v ′) = Γ(v); otherwise, Γ′ = Γ. Then
(Σ, Γ) ∼ (Σ′, Γ′), Jσ ′KΣ′;Γ′ is defined, and JσKΣ;Γ ∼ Jσ ′KΣ′;Γ′ .

Proof. By induction on syntactic structure. Given in the Coq
formalisation. □
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Proposition 5. Suppose JPK is defined, ℓ ∈ decl(P), and v ∈

V does not occur in P , then P ↪→ P ′ is a valid renaming, where
P ′ = P[ℓ′ 7→ v | ℓ′ ∈ [ℓ]ÊP ∨ ∃ℓ′′ ∈ [ℓ]ÊP . ℓ

′↣P ℓ
′′].

Proof. By straightforward instantiation of lemma 16 with
σ ≡ P , interpreted with respect to Σ = Σ⊥ and Γ = Γ⊥.
In this case, the definition of P ′ arises because we have by
lemma 9 that JPK is relevant for dom(P) over Σ⊥ and thus,
by definition 21, it follows that L ⊆ dom(P). □

A.2 Adequacy

Here we give the full definition of our denotational model
of behaviour for the OCaml module calculus. We first reiter-
ate the definition of the denotational domain in which we
interpret programs.
We assume an interpretation, using standard results, of

value expressions (viz. lambda terms) in some domain F
containing an element wrong denoting run-time errors. We
interpret modules in a domainM satisfying:

M = D + (M→ M) +wrong
D = (V ⇀fin F) × (T ⇀fin T) × (M ⇀fin M)

where T is the domain (defined below) in which we interpret
module types. For d ∈ D we will write ι ∈ dom(d) to mean
that ι is in the domain of the appropriate component ofd , and
d(ι) to mean the application of the appropriate component
of d to ι. For d,d ′ ∈ D, we write d + d ′ for the module
denotation (also in D) for which (d + d ′)(ι) = d ′(ι) if ι ∈

dom(d ′), (d + d ′)(ι) = d(ι) if ι ∈ dom(d) \ dom(d ′), and
undefined otherwise. We define d +wrong to denotewrong.
We will also sometimes describe an element d ∈ D as a
(finite) set of pairs of the appropriate sorts of elements.

We interpret module types as elements in the initial alge-
bra T of the following functor F (in the category of sets):

F (X ) = D(X ) + (M × X ) × X +wrong
D(X ) = ℘fin(V) × (T ⇀fin X ) × (M ⇀fin X )

For τ ∈ D(T) we abuse notation and write V(τ ) for the
first component of τ ; we also write τ (ι) to mean the applica-
tion of the appropriate component of τ to ι, and dom(τ ) to
mean the combined domains of the second and third com-
ponents of τ . For τ , τ ∈ D(T) we write τ + τ ′ for the module
type denotation (also in D(T)) for which domV(τ + τ ′) =
domV(τ ) ∪ domV(τ ′), with (τ + τ ′)(ι) = τ ′(ι) if ι ∈ dom(τ ′),
(τ + τ ′)(ι) = τ (ι) if ι ∈ dom(τ ) \ dom(τ ′), and undefined
otherwise. We define τ +wrong to denote wrong. We will
also sometimes describe an element τ ∈ D(T) as a (finite) set
of value identifiers and pairs of appropriate elements.
The denotational interpretation function L·Mθ is defined

in fig. 4. It is parameterised by a denotational environment
θ mapping value identifiers to elements of F, module type
identifiers to elements of T, and module identifiers to pairs
consisting of an element of M and an element of T. This
function interprets value expressions in F, module types in

T, and module expressions as a pair of an element inM and
an element in T. Thus, for a module expression, L·Mθ also
synthesizes (the meaning of) its corresponding module type.
We write LσM to mean LσMθ⊥ , where θ⊥ is the environment
that maps value and module type identifiers to wrong and
module identifiers to the pair (wrong,wrong).
As a notational convenience, for d ∈ D and τ ∈ D(T)

we write θ + (d, τ ) to denote the environment θ updated
by the mappings in d , with mappings of module identifiers
in d augmented by the corresponding module types in τ .
That is, if x ∈ dom(d), then (θ + (d, τ ))(x) = (d(x), τ ′) where
τ ′ = τ (x) if x ∈ dom(τ ) and τ ′ = wrong otherwise.

The following coercion operation is used to give meaning
to functors and module type annotations.

Definition 23 (Denotational Coercion). The (infix) operator
(:), of typeM×T→ M, is defined inductively on the structure
of module type denotations as follows.

d :τ =


V ∪M ∪T if d ∈ D ∧ τ ∈ D(T)

λd ′.(d(d ′:τ1)):τ2 if d ∈ M→ M ∧ τ = ((x, τ1), τ2)

wrong otherwise

where V = {(v,d(v)) | v ∈ dom(d) ∧v ∈ V(τ )}

∪ {(v,wrong) | v < dom(d) ∧v ∈ V(τ )}

M = {(x,d(x):τ (x)) | x ∈ dom(d) ∧ x ∈ dom(τ )}

∪ {(x,wrong) | x < dom(d) ∧ x ∈ dom(τ )}

T = {(t, τ (t)) | t ∈ dom(τ )}

We also define an operation to ‘promote’ a module type
denotation to a module denotation. This operation reifies the
structure of the module type denotation, building constant-
valued functors for (sub)modules having a functor type. It is
used to define the meaning of module types in various cases.

Definition 24 (Promotion). We define (·)∗ : T → M by
induction on the structure of module type denotations.

wrong∗ = wrong

τ ∗ = {(v,wrong) | v ∈ V(τ )} if τ ∈ D(T)

∪ {(t, τ (t) | t ∈ dom(τ )}

∪ {(x, τ (x)∗) | x ∈ dom(τ )}

((x, τ1), τ2)
∗ = λ_.τ2∗

To prove the adequacy result, we must define how the
elements of the set-theoretic semantics of section 3 relate to
those of the denotational semantics defined in section 5. We
first consider how the meanings of module types in the two
semantics are related.

Definition 25. The relation τ |=ρ ∆, for a module type
denotation τ ∈ T and a semantic description ∆ ∈ D w.r.t. a
reification function ρ, is defined inductively as follows.
(1) wrong |=ρ ∆ for all ∆, ρ.
(2) τ |=ρ D, for τ ∈ D(T), if:
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LxMθ = θ (x )

Lq1(q2)Mθ = let (d ′, _) = Lq2Mθ in match Lq1Mθ with
| (d ∈ M→ M, ((x , τ1), τ2)) → (d (d ′), τ2)

| (d ∈ M→ M, _) → (d (d ′),wrong)

| _ → (wrong,wrong)

Lq.xMθ = match LqMθ with
| (d ∈ D, τ ∈ D(T)) when x ∈ dom(τ ) →

if x ∈ dom(d ) then (d (x ), τ (x )) else (wrong, τ (x ))

| (d ∈ D, τ ∈ D(T)) when x ∈ dom(d) → (d (x ),wrong)

| _→ (wrong,wrong)

(a) Semantics of (extended) module paths.

LtMθ = θ (t )

Lp.tMθ = let (_, τ ) = LpMθ in if τ ∈ D(T) and t ∈ dom(τ )

then τ (t ) else wrong

Lfunctor (x :M1) -> M2Mθ = let τ = LM1Mθ in
let τ ′ = LM2Mθ [x 7→ (τ ∗ ,τ )] in ((x , τ ), τ ′)

LM with module x = qMθ = let (_, τ ′) = LqMθ in let τ = LMMθ in
if τ ∈ D(T) then LMMθ [x 7→ τ ′] else wrong

LM with module x := qMθ = let τ = LMMθ in
if τ ∈ D(T) then τ \ x else wrong

Lsig S endMθ = LSMθ

LεMθ = ∅

Lval v : _ ;; sMθ = let τ = LsMθ [v 7→wrong] in {v } + τ

Lmodule x :M ;; sMθ = let τ = LMMθ in
let τ ′ = LsMθ [x 7→ (τ ∗ ,τ )] in {(x , τ )} + τ ′

Lmodule type t ;; sMθ = let τ = LsMθ [t 7→ ∅] in {(t , ∅)} + τ

Lmodule type t = M ;; sMθ = let τ = LMMθ in
let τ ′ = LsMθ [t 7→ τ ] in {(t , τ )} + τ ′

Linclude M ;; sMθ = let τ = LMMθ in if τ ∈ D(T) then
let τ ′ = LsMθ+(τ ∗ ,τ ) in τ + τ ′

else wrong

(b) Semantics of module types.

Lstruct s endMθ = LsMθ
Lfunctor (x :M) -> mMθ = λd . if d = wrong then wrong else

let τ = LMMθ in LmMθ [x 7→ (d :τ ,τ )]

Lm1(m2)Mθ = let (d ′, _) = Lm2Mθ in match Lm1Mθ with
| (d ∈ M→ M, ((x , τ1), τ2)) → (d (d ′), τ2)

| (d ∈ M→ M, _) → (d (d ′),wrong)

| _ → (wrong,wrong)

Lm :MMθ = let d = LmMθ in let τ = LMMθ in (d :τ , τ )
LεMθ = (∅, ∅)

Llet v = e ;; sMθ = let f = LeMθ in let (d , τ ) = LsMθ [v 7→ f ] in
({(v , f )} + d , {v } + τ )

Lmodule x = m ;; sMθ = let (d , τ ) = LmMθ in
let (d ′, τ ′) = LsMθ [x 7→(d ,τ )] in
({(x , d )} + d ′, {(x , τ )} + τ ′)

Lmodule type t = M ;; sMθ = let τ = LMMθ in let (d , τ ′) = LsMθ [t 7→ τ ] in
({(t , τ )} + d , {(t , τ )} + τ ′)

Linclude m ;; sMθ = let (d , τ ) = LmMθ in if d ∈ D then
let (d ′, τ ′) = LsMθ+(d ,τ ) in (d + d ′, τ + τ ′)

else (wrong,wrong)

(c) Semantics of module expressions.

Lmodule x = m ;; PMθ = let (d , τ ) = LmMθ in LPMθ [x 7→ (d ,τ )] Lp.vMθ = let (d , _) = LpMθ in if v ∈ dom(d ) then d (v) else wrong

(d) Semantics of programs and module paths in value expressions.

Figure 4. The denotational semantics of the OCaml calculus.

(i) ∀ℓ ∈ D: ℓ ∈ dom(ρ) and ρ(ℓ) ∈ V(τ ); and
(ii) ∀(ℓ,∆) ∈ D: ℓ ∈ dom(ρ), ρ(ℓ) ∈ dom(τ ) and

τ (ρ(ℓ)) |=ρ ∆.
(3) ((x, τ ), τ ′) |=ρ ((ℓ,∆),∆′) if:

ℓ ∈ dom(ρ), ρ(ℓ) = x , τ |=ρ ∆, and τ ′ |=ρ ∆′.
When τ |=ρ ∆ holds, we say that the module type denotation
τ models the semantic description ∆ (w.r.t. ρ).

This relation satisfies a monotonicity property.

Lemma 17. If τ |=ρ ∆ and ρ ⊆ ρ ′ then τ |=ρ′ ∆.

Proof. Straightforward induction on the definition of |=ρ . □

The heart of the refinement result that we show below,
from which adequacy follows, is a logical relation asserting

that two module denotations both constitute the same ‘im-
plementation’ of a module description in the set-theoretic
semantics with respect to two given reification functions.

Definition 26. For ∆ ∈ D, d,d ′ ∈ M, and reification func-
tions ρ, ρ ′, the logical relation ∆ ⊢ (ρ,d) ∼ (ρ ′,d ′) is defined
inductively on the structure of descriptions as follows.
1. ∆ ⊢ (ρ,wrong) ∼ (ρ ′,wrong) for all ∆, ρ, and ρ ′.
2. D ⊢ (ρ,d) ∼ (ρ ′,d ′), for d,d ′ ∈ D, if:
(a) ι ∈ dom(d) ⇔ ∃ℓ. (ℓ ∈ D ∨ ∃∆. (ℓ,∆) ∈ D) ∧ ρ(ℓ) = ι
(b) ι ∈ dom(d ′) ⇔ ∃ℓ. (ℓ ∈ D ∨∃∆. (ℓ,∆) ∈ D) ∧ ρ ′(ℓ) = ι
(c) ∀ℓ ∈ D. ρ(ℓ) ∈ V ∧ ρ ′(ℓ) ∈ V ⇒ d(ρ(ℓ)) = d ′(ρ ′(ℓ))
(d) ∀(ℓ,∆) ∈ D:

i. ρ(ℓ) ∈ T ⇒ d(ρ(ℓ)) |=ρ ∆
ii. ρ ′(ℓ) ∈ T ⇒ d ′(ρ ′(ℓ)) |=ρ′ ∆
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iii. ρ(ℓ) ∈ M ∧ ρ ′(ℓ) ∈ M ⇒

∆ ⊢ (ρ,d(ρ(ℓ))) ∼ (ρ ′,d ′(ρ ′(ℓ)))
3. (ℓ:∆1)�∆2 ⊢ (ρ,d) ∼ (ρ ′,d ′), for d,d ′ ∈ M→ M, if:

∀d1,d2 ∈ M, ρ1 ⊇ ρ, ρ2 ⊇ ρ ′.
∆1 ⊢ (ρ1,d1) ∼ (ρ2,d2) ⇒

∆2 ⊢ (ρ1,d(d1)) ∼ (ρ2,d
′(d2))

This logical relation is also monotone with respect to reifi-
cation functions.

Lemma 18. Suppose ∆ ⊢ (ρ1,d1) ∼ (ρ2,d2), with ρ1 ⊢ ∆ and
ρ2 ⊢ ∆; if ρ1 ⊆ ρ ′1 and ρ2 ⊆ ρ ′2 then ∆ ⊢ (ρ ′1,d1) ∼ (ρ ′2,d2).

Proof. Straightforward, by induction. □

Using these relations we can define when two sets of
semantics with a corresponding (set-theoretic) semantic and
denotational environment, constitute the same context up
to renaming.

Definition 27. We define a relation on tuples of semantics
and environments by (Σ, Γ, θ ) ∼ (Σ′, Γ′, θ ′) if and only if:
(1) (Σ, Γ) ∼ (Σ′, Γ′);
(2) for all v ∈ V ,

(i) Γ(v) = ⊥ ⇒ θ (v) = wrong
(ii) Γ′(v) = ⊥ ⇒ θ ′(v) = wrong
(iii) for all v ′ ∈ V , Γ(v) = Γ′(v ′) ⇒ θ (v) = θ ′(v ′)

(3) for all t ∈ T , θ (t) |=Σρ Γ(t) and θ ′(t) |=Σ′ρ Γ′(t)
(4) for all x ∈ M with θ (x) = (d, τ ) and θ ′(x) = (d ′, τ ′),

(i) τ |=Σρ Γ(x) and τ ′ |=Σ′ρ Γ′(x)
(ii) ∆ ⊢ (Σρ ,d) ∼ (Σ′

ρ ,d
′), where ∆ = Γ(x) = Γ′(x)

The following property holds.

Lemma 19. Let v,v ′ ∈ V be value identifiers, d ∈ F a value
denotation, and ℓ , ⊥ a location such that ℓ < dom(Σρ ),
ℓ < dom(Σ′

ρ ), ℓ < ran(Γ1), and ℓ < ran(Γ2) for ℓ , ⊥; then

(Σ, Γ, θ ) ∼ (Σ′, Γ′, θ ′) ⇒

(Σ[ℓ 7→ v], Γ[v 7→ ℓ], θ [v 7→ d]) ∼

(Σ′[ℓ 7→ v ′], Γ′[v ′ 7→ ℓ], θ ′[v ′ 7→ d])

Proof. Suppose (Σ, Γ, θ ) ∼ (Σ′, Γ′, θ ′). By lemma 12 it follows
that Σ[ℓ 7→ v] ∼ Σ′[ℓ 7→ v ′] and Γ[v 7→ ℓ] ∼ Γ′[v ′ 7→ ℓ]. By
definition 27, the only extra condition we need to check is
clause 2(iii) for v and v ′, since the additional mapping in
each case gives Γ[v 7→ ℓ](v) = Γ′[v ′ 7→ ℓ](v ′) = ℓ. Notice
that we have θ [v 7→ d](v) = θ ′[v ′ 7→ d](v ′) = d , and so the
condition is met. □

We can now show that the set-theoretic semantics refines
the denotational semantics.

Theorem 20 (Refinement). Suppose σ1 ↪→ σ2 is a renaming,
Jσ1KΣ1;Γ1 = Σ′ ∼ Σ′′ = Jσ2KΣ2;Γ2 with Σ1 and Σ2 proper, and
there are θ1, θ2 with (Σ1, Γ1, θ1) ∼ (Σ2, Γ2, θ2); then:
1. if σ1, σ2 are module types, then DΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) =

∆ with Lσ1Mθ1 |=Σ′ρ ∆ and Lσ2Mθ2 |=Σ′′ρ ∆;

2. if σ1, σ2 are module expressions, where Lσ1Mθ1 = (d1, τ1)
and Lσ2Mθ2 = (d2, τ2), then DΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) = ∆
with τ1 |=Σ′ρ ∆, τ2 |=Σ′′ρ ∆, and ∆ ⊢ (Σ′

ρ ,d1) ∼ (Σ′′
ρ ,d2);

3. if σ1 and σ2 are both value expressions or both programs,
then Lσ1Mθ1 = Lσ2Mθ2 .

Proof. By induction on syntactic structure. We show some
of the important cases in detail.

Value Expressions. For value expressions, the result follows
straightforwardly by induction using the standard denota-
tional constructions of lambda calculus; we need only to
show that (qualified) value identifiers have the same denota-
tion. Let σ ≡ p.vℓ and σ ′ ≡ p.v ′

ℓ . Then Σ′ = Σ3[ℓ 7→ (v, ℓ′)]
and Σ′′ = Σ4[ℓ 7→ (v ′, ℓ′)] for some ℓ′, where JpKΣ1;Γ1 = Σ3 =
(↣,E, ρ) and JpKΣ2;Γ2 = Σ4 = (↣,E, ρ), with Σ3 ∼ Σ4. More-
over, by lemma 6, Σ3 and Σ4 are proper. Thus by the induc-
tive hypothesis we have that there is some D = DΣ1;Γ1 (p) =
DΣ2;Γ2 (p) with D ⊢ (ρ,d1) ∼ (ρ ′,d2), where LpMθ1 = (d1, τ1)
and LpMθ2 = (d2, τ2). There are now two cases to consider,
from the definition of the set-theoretic semantics (cf. fig. 3):

(ℓ′ = ⊥): Then we have ρ(ℓ′′) , v and ρ ′(ℓ′′) , v ′ for
all ℓ′′ ∈ D. Thus it follows from clauses (2a) and (2b) of
definition 26 that v < dom(d1) and v ′ < dom(d2). Therefore,
by definition (cf. fig. 4), Lp.vℓMθ1 = Lp.v ′

ℓMθ2 = wrong, as
required.

(ℓ′ , ⊥): Then we have that ℓ′ ∈ D with ρ(ℓ′) = v and
ρ ′(ℓ′) = v ′. It thus follows from clauses (2a) and (2b) of defini-
tion 26, respectively, thatv ∈ dom(d1) andv ′ ∈ dom(d2), and
from clause (2c) that d1(v) = d1(ρ(ℓ′)) = d2(ρ ′(ℓ′)) = d2(v ′).
Therefore Lp.vℓMθ1 = Lp.v ′

ℓMθ2 , as required.

Programs. If σ1 and σ2 are value expressions, then the result
follows immediately from that for value expressions. When
σ1 ≡ let xℓ = m1 ;; P1 and σ2 ≡ let xℓ = m2 ;; P2, then
there are semantics Σ3 = Jm1KΣ1;Γ1 and Σ4 = Jm2KΣ2;Γ2 and
descriptions ∆1 = DΣ1;Γ1 (m1) and ∆2 = DΣ2;Γ2 (m2) such that
Σ′ = JP1KΣ3[ℓ 7→x ];Γ1[x 7→∆1] and Σ′′ = JP2KΣ4[ℓ 7→x ];Γ2[x 7→∆2]. By
lemma 6, both Σ3 and Σ4 are proper. It thus follows trivially
from definition 19 that Σ3[ℓ 7→ x] and Σ4[ℓ 7→ x] are proper,
since the only difference in the updated semantics is in the
reification function. Therefore, by lemma 9, we have that
Σ3[ℓ 7→ x] ⊆ Σ′with Σ′\Σ3[ℓ 7→ x] ⊆ dom(P1) and dom(P1)
fresh for Σ3[ℓ 7→ x], as well as Σ4[ℓ 7→ x] ⊆ Σ′′ with
Σ′′\Σ4[ℓ 7→ x] ⊆ dom(P2) and dom(P2) fresh for Σ4[ℓ 7→ x].
Hence, by lemma 10, Σ3[ℓ 7→ x] ∼ Σ4[ℓ 7→ x]. More-
over notice that, by lemma 9, we have that Σ1 ⊆ Σ3 and
Σ3 \ Σ1 ⊆ dom(m1) with dom(m1) fresh for Σ1, and also
Σ2 ⊆ Σ4 and Σ4 \ Σ2 ⊆ dom(m2) with dom(m2) fresh for Σ2.
Therefore, given that neither ℓ ∈ dom(m1) nor ℓ ∈ dom(m2),
and Σ3[ℓ 7→ x] ∼ Σ4[ℓ 7→ x], it is then immediate from
definition 16 that Σ3 ∼ Σ4. Now, since σ1 ↪→ σ2 is a re-
naming, so is m1 ↪→ m2. So, by the inductive hypothesis,
∆1 = ∆2 = ∆ with τ1 |=ρ3 ∆, τ2 |=ρ4 ∆ and ∆ ⊢ (ρ3,d1) ∼
(ρ4,d2), where Lm1Mθ1 = (τ1,d1) and Lm2Mθ2 = (τ2,d2), with
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Σ3 = (↣3,E3, ρ3) and Σ3 = (↣4,E4, ρ4). Thus, according to
definition 27, we straightforwardly obtain

(Σ3[ℓ 7→ x], Γ1[x 7→ ∆], θ1[x 7→ (d1, τ1)])

∼ (Σ4[ℓ 7→ x], Γ2[x 7→ ∆], θ2[x 7→ (d2, τ2)])

since (Σ3[ℓ 7→ x], Γ1[x 7→ ∆]) ∼ (Σ4[ℓ 7→ x], Γ2[x 7→ ∆]) is a
precondition to the definedness of JP1KΣ3[ℓ 7→x ];Γ1[x 7→∆] and
JP2KΣ4[ℓ 7→x ];Γ2[x 7→∆]. Finally, this allows us to obtain from the
inductive hypothesis that LP1Mθ1[x 7→(d1,τ1)] = LP2Mθ2[x 7→(d2,τ2)],
whence the result follows from the definition of the denota-
tional semantics.

Value specifications. So σ1 ≡ val vℓ : _ ;; S1 and σ2 ≡
val v ′

ℓ
: _ ;; S2, with JS1KΣ′1;Γ′1 = Σ′′

1 and JS2KΣ′2;Γ′2 = Σ′′
2

where Σ′
1 = Σ1[ℓ 7→ v] and Σ′

2 = Σ2[ℓ 7→ v ′] with Γ′1 =
Γ1[v 7→ ℓ] and Γ′2 = Γ2[v

′ 7→ ℓ]. Then, let D1 = DΣ′1;Γ′1 (S1)
and D2 = DΣ′2;Γ′2 (S2). So, Σ

′ = Σ′′
1 [{ℓ} ⊗ D1] and Σ′′ =

Σ′′
2 [{ℓ} ⊗ D2]. Since Σ1 and Σ2 are proper, we have by lemma 11

that Σ′
1 and Σ′

2 are also proper. Moreover, since Σ1 ∼ Σ2, we
have by lemma 12(1) that Σ′

1 ∼ Σ′
2. Similarly, since Γ1 ∼ Γ2,

we have by lemma 12(2) that Γ′1 ∼ Γ′2 . Now, take θ ′1 = θ1[v 7→

wrong] and θ ′2 = θ2[v
′ 7→ wrong]. Thus, by lemma 19, we

have (Σ′
1, Γ

′
1 , θ

′
1) ∼ (Σ′

2, Γ
′
2 , θ

′
2). Since ℓ ∈ dom(σ1) = dom(σ2),

it follows from definition 15 and the fact that Γ1 and Γ2 are
well-behaved w.r.t. Σ1 and Σ2, respectively, that ℓ < ranD(Γ1)
and ℓ < ranD(Γ2). Thus ℓ < ranD(Γ′1 ) and ℓ < ranD(Γ′2 ),
also. Notice too that ℓ < dom(S1) = dom(S2). Therefore, by
lemma 7, ℓ < D1 and ℓ < D2. Furthermore, since ℓ does
not appear in Σ1 or Σ2 (by definition 15), it follows from
lemma 8 that there is no ℓ′ such that (ℓ, ℓ′) is contained in
the extension kernels of Σ′′

1 or Σ′′
2 . Thus by lemma 13 we

have Σ′′
1 ∼ Σ′′

2 . So, by the inductive hypothesis, we obtain
D1 = D2 = D with LS1Mθ ′

1
|=ρ′1 D and LS2Mθ ′

2
|=ρ′2 D, where ρ

′
1

and ρ ′2 are the reification functions of Σ′′
1 and Σ′′

2 , respectively.
Then DΣ1;Γ1 (σ1) = {ℓ} ⊕Σ′ D and DΣ2;Γ2 (σ2) = {ℓ} ⊕Σ′′ D.
We also have, by lemma 9, that Σ′

1 ⊆ Σ′′
1 and Σ′

2 ⊆ Σ′′
2 . Let

Σ′′
1 = (↣′,E′, ρ ′) and Σ′′

2 = (↣′′,E′′, ρ ′′). Then
• Σ′ = (↣′,E′ ∪ ({ℓ} ⊗ρ′ D), ρ

′); and
• Σ′′ = (↣′′,E′′ ∪ ({ℓ} ⊗ρ′′ D), ρ

′′).
We now need to show the following.

1. DΣ1,Γ1 (σ1) = DΣ2,Γ2 (σ2), i.e. {ℓ} ⊕ρ′ D = {ℓ} ⊕ρ′′ D.
By definition 10, it suffices to prove ∃ℓ′ ∈ D. ρ ′(ℓ) = ρ ′(ℓ′)
if and only if ∃ℓ′ ∈ D. ρ ′′(ℓ) = ρ ′′(ℓ′). We show the ‘only
if’ direction; the other is symmetric. Assume ℓ′ ∈ D with
ρ ′(ℓ) = ρ ′(ℓ′). Then by definition 11 (ℓ, ℓ′) ∈ {ℓ} ⊗ρ′ D.
Therefore, since Σ′ ∼ Σ′′, we have by definition 16 that
also (ℓ, ℓ′) ∈ E′′ ∪ ({ℓ} ⊗ρ′′ D). The result is then obtained
immediately from definition 19 since, by lemma 6, Σ′′ is
proper and so ρ ′′(ℓ) = ρ ′′(ℓ′).
2. Lσ1Mθ1 |=ρ′ D

′ and Lσ2Mθ2 |=ρ′′ D
′, forD ′ = {ℓ} ⊕ρ′ D =

{ℓ} ⊕ρ′′ D. We show that Lσ1Mθ1 |=ρ′ D
′; showing the other

is similar. We distinguish two cases.

– If there exists some ℓ′ ∈ D such that ρ ′(ℓ′) = v then D ′ =

{ℓ} ⊕ρ′ D = D and, by clause 2(i) of definition 25, Lσ1Mθ1 =
{v} + LS1Mθ ′

1
= LS1Mθ ′

1
since v ∈ V(LS1Mθ ′

1
). Therefore the

result follows, by lemma 17, from the fact that LS1Mθ ′
1
|=ρ′1 D

and ρ ′1 ⊆ ρ ′, the latter entailed by Σ′
1 ⊆ Σ′′

1 .
– Otherwise, then ℓ ∈ D ′ = {ℓ} ∪ D and v ∈ V(Lσ1Mθ1 ) =
{v} ∪ LS1Mθ ′

1
. Since Σ′

1 ⊆ Σ′′
1 , and thus ρ ′1 ⊆ ρ ′, we have

by lemma 17 that LS1Mθ ′
1
|=ρ′ D. Notice that we also thus

have ρ ′(ℓ) = v since ρ ′1(ℓ) = v . The result then follows
straightforwardly by definition 25.

Value definitions. This is similar to the case for value spec-
ifications above. Here we have σ1 ≡ let vℓ = e1 ;; s1 and
σ1 ≡ let v ′

ℓ
= e2 ;; s2 with Je1KΣ1;Γ1 = Σ3, Je2KΣ2;Γ2 = Σ4,

Js1KΣ′3;Γ′1 = Σ′′
3 , and Js2KΣ′4;Γ′2 = Σ′′

4 where Σ′
3 = Σ3[ℓ 7→ v],

Γ′1 = Γ1[v 7→ ℓ], Σ′
4 = Σ4[ℓ 7→ v ′], and Γ′2 = Γ2[v

′ 7→ ℓ],
Moreover, let D ′

1 = DΣ′3;Γ′1 (s1) and D ′
2 = DΣ′4;Γ′2 (s2). So, Σ

′ =

Σ′′
3 [{ℓ} ⊗ D ′

1] and Σ′′ = Σ′′
4 [{ℓ} ⊗ D ′

2]. Since ℓ ∈ dom(σ1) =
dom(σ2), it follows from definition 15 and the fact that Γ1
and Γ2 are well-behaved w.r.t. Σ1 and Σ2, respectively, that
ℓ < ranD(Γ1) and ℓ < ranD(Γ2). Thus ℓ < ranD(Γ′1 ) and
ℓ < ranD(Γ′2 ), also. Notice too that ℓ < dom(s1) = dom(s2).
Therefore, by lemma 7, ℓ < D1 and ℓ < D2. Furthermore,
since ℓ does not appear in Σ1 or Σ2 (by definition 15), nor
in dom(e1) = dom(e2), it follows from lemma 9(2) that ℓ
does not appear in Σ3 or Σ4. Then, by lemma 8, we have that
there is no ℓ′ such that (ℓ, ℓ′) is contained in the extension
kernels of Σ′′

3 or Σ′′
4 . Thus by lemma 13 we have Σ′′

3 ∼ Σ′′
4 .

Now, by lemma 9 we have that Σ′
3 ⊆ Σ′′

3 and Σ′
4 ⊆ Σ′′

4
(properly), as well as Σ′′

3 \ Σ′
3 ⊆ L and Σ′′

4 \ Σ′
4 ⊆ L with

L fresh for both Σ′
3 and Σ′

4, where L = dom(s1) = dom(s2).
So, by lemma 10, it follows that Σ′

3 ∼ Σ′
4 and therefore, by

lemma 12(1), that Σ3 ∼ Σ4. Thus, by the inductive hypothesis,
we have Le1Mθ1 = Le2Mθ2 = d . Furthermore, by lemma 6, both
Σ3 and Σ4 are proper. Thus, by lemma 11 it follows that Σ′

3
and Σ′

4 are proper too. We also have, by lemma 12(2) that
Γ′1 ∼ Γ′2 . Now, take θ ′

1 = θ1[v 7→ d] and θ ′2 = θ2[v
′ 7→ d].

It then follows from lemma 19 that (Σ′
3, Γ

′
1 , θ

′
1) ∼ (Σ′

4, Γ
′
2 , θ

′
2).

Thus, another application of the inductive hypothesis de-
rives that D ′

1 = D ′
2 = D ′ with τ ′1 |=ρ′ D

′, τ ′2 |=ρ′′ D
′, and D ′ ⊢

(ρ ′,d ′
1) ∼ (ρ ′′,d ′

2), for (d ′
1, τ

′
1) = Ls1Mθ ′

1
and (d ′

2, τ
′
2) = Ls2Mθ ′

2
,

where Σ′′
3 = (↣′,E′, ρ ′), and Σ′′

4 = (↣′′,E′′, ρ ′′). We must
now show three things.
(i) DΣ1;Γ1 (σ1) = {ℓ} ⊗ρ′ D

′ = {ℓ} ⊗ρ′′ D
′ = DΣ2;Γ2 (σ2).

(ii) {v} + τ ′1 |=ρ′ {ℓ} ⊗ρ′ D
′ and {v ′} + τ ′2 |=ρ′′ {ℓ} ⊗ρ′′ D

′.
(iii) D ⊢ (ρ ′,d1) ∼ (ρ ′′,d2), where DΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) =

D with d1 = {(v,d)} + d ′
1 and d2 = {(v ′,d)} + d ′

2.
The first two properties hold by the same reasoning as shown
in the case for value descriptions above. To show that the
last property holds, we consider two cases.
(D = D ′

): So there is ℓ′ ∈ D ′ such that ρ ′(ℓ′) = v and ℓ′′ ∈
D ′ such that ρ ′′(ℓ′′) = v ′. Thus, since D ′ ⊢ (ρ ′,d ′

1) ∼
(ρ ′′,d ′

2) we have by definition 26 that v ∈ dom(d ′
1)
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and v ′ ∈ dom(d ′
2). Therefore, {(v,d)} + d ′

1 = d ′
1 and

{(v ′,d)} + d ′
2 = d

′
2, whence the result follows directly.

(ℓ < D ′
, D = D ′ ∪ {ℓ}): Since D ′ ⊢ (ρ ′,d ′

1) ∼ (ρ ′′,d ′
2) it fol-

lows from definition 26 that v < dom(d ′
1) and v ′ <

dom(d ′
2). Thus, we have that dom(d1) = dom(d ′

1)∪{v}
and dom(d2) = dom(d ′

2)∪ {v ′}. Moreover, d1(v) = d =
d2(v

′). From these properties, we can derive the result
by definition 26. □

Proposition 6 (Adequacy). LPM = LP ′M if P ↪→ P ′ is valid.

Proof. By straightforward instantiation of theorem 20 with
σ ≡ P and σ ′ ≡ P ′, interpreted with respect to Σ1 = Σ2 = Σ⊥,
Γ1 = Γ2 = Γ⊥, and θ1 = θ2 = θ⊥, for which it is straightfor-
ward to show that (Σ⊥, Γ⊥, θ⊥) ∼ (Σ⊥, Γ⊥, θ⊥). □
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