
Hybrid System verification in Coq

Hugo Férée
directed by Herman Geuvers

Radbound University, Nijmegen

Abstract. This internship is intended to improve the abstraction method
described by Alur in [2], and implemented in Coq in Nimegen [5,7] for
proving the safety of hybrid systems.

1 Introduction

Hybrid automata [6] are a good theoretical model for a wide range of
real world physical devices. The hybrid system model aims to represent
systems measuring continuous physical quantities (e.g. temperature, pres-
sure, position or speed) and moving from a state (modes) (among a finite
set) to another depending on these values. Then, they can modify some
of the environment variables using actuators (e.g. heaters, engines) in a
way depending on the current discrete state.

There already exists many tools to help proving that the behaviour of
the theoretical system (and if it is a good model, of the real system too) is
what we intend it to be (in this case, the system is said to be safe). Some of
them (e.g. Kronos, Uppaal, HyTech) use a symbolic representation of the
continuous variables, and then do exact computations, but this requires a
lot of assumptions on the system and complex solvers. Other tools, such
as CheckMate or d/dt use approximations (with polyhedra or ellipsoids)
and optimisation strategies in order to prove the safety of more general
systems.

We will here use and try to improve the method described by Alur [2,3]
and implemented [5,7] in Coq in Nijmegen using the constructive CoRN
library [4] (also developped here in Nijmegen). This method mainly de-
pends on an abstract representation of the hybrid system as a finite graph
using a discretization of the continuous space representing the environ-
ment variables. Then, the safety of the hybrid system can be proved by
looking at the reachability of some nodes of the graph. This is then a
proof by computation, and some computations are made over the con-
tinuous space. This is why we use the constructive real numbers of the
CoRN library. The use of the Coq proof assistant allows to have a cer-
tified proof. Then, since Coq computations are not always very efficient,



Ocaml or Haskell code can be extracted to make these computation more
quickly.

But this method only underestimates the safety of the hybrid system,
and it may fail, for example if this discretization is inappropriate, even
if the system is safe. This is why we have tried to make it more robust,
by analysing the reason of the failure, and using it to provide a new
abstraction which will more likely manage to prove the safety. Of course,
this new method won’t always work, since even for very simple sets of
hybrid systems, the safety is undecidable.

Section 2 describes the hybrid system model. Section 3 gives Alur’s
abstraction method and gives some important points of Geuvers’ Coq
implementation, especially how to deal with constructive real numbers in
our case. Finally, section 4 describes our improvement of the method.

2 The hybrid system model

2.1 Definition

A hybrid system is a theoretical model, such as finite automata or Turing
machines, defined over two kinds of sets:

– a finite set called locations
– an infinite set of points defined by a finite number of continuous vari-

ables (typically ranging over R)

A state of the system is then defined by a location and a point.
In the following, we will denote by E the set of points, by L the set of

locations, by S = L × E the set of states and by R≥0 the set of positive
real numbers.

Like a Turing machine, a hybrid system has a set of initial states,
defined by a predicate (called Init) and a transition function, but the
complexity of the space makes it more comprehensible using several func-
tions and conditions. The transition function is then described by:

– a flow function F : S → R≥0 → E (we will denote by Fl the flow
function at location l)

– a predicate I (the invariant) over S (we will denote by Il the invariant
predicate at location l)

– a reset function R : L×L→ E → E (we will denote by Rl,l′ the reset
function from location l to location l′)

– a predicate G (the guard) over S×L (we will denote by Gl,l′ the guard
predicate from location l to location l′)



where P(S) is the set of subsets of S.

R and G describe the discrete transitions: from the location l and the
point p, one can go to the location l′ only if the guard G((l, p), l′) is true.
Then, the new state is (l′,R(l, l′, p)).

In addition to the continuous variables, there is also a special time
variable ranging over R≥0, reset at each discrete transition (i.e. it corre-
sponds to the time already spent in the current location). It is needed to
define the continuous transitions, described by F and I:

– the system can stay in the location l only if it verifies the invariant

– if the system entered the location l in point p, then after a duration
d ∈ R≥0, it has moved to the point Fl(p, d)

These two kinds of transitions are summed up in figure 1.

l l′
Gl,l′(p)⇒
(l′,Rl,l′(p))

∀0 ≤ t ≤ d,
Il(Fl(p, t))⇒
(l,Fl(p, d))

∀0 ≤ t ≤ d,
Il′(Fl′(p, t))⇒
(l′,Fl′(p, d))

Fig. 1: Schematic representation of the discrete and continuous transitions
of a hybrid system.

This is the most general description of a hybrid system, but we can
make some restriction, which won’t prevent real systems to be modeled.

The intuitive meaning of the flow function it a transformation without
memory: the evolution of the system at time t depends on its current
state, but not of the previous ones. This property can be expressed by
the additivity of the flow function F :

∀l ∈ L,∀x ∈ E,Fl(x, 0) = x

∀l ∈ L,∀x ∈ E,∀t1, t2 ∈ R≥0,Fl(x, t1 + t2) = Fl(Fl(x, t1), t2)

These are examples of flow functions:

Example 1. Flow functions



– x, t→ x (constant flow)
– x, t→ x+ αt, where α ∈ R (linear flow)
– x, t→ xeαt (exponential flow)

2.2 The thermostat example

The following example (described by figure 2) has been studied in [5,7].
The thermostat is a typical example of hybrid system if we see it as a sys-
tem measuring some environment variables (here the temperature T and
a timer c) and acting on them (here heating or cooling the environment).

Cool
T ≥ 5
ċ = 1

Ṫ = −T

Heat
T ≤ 5 & c ≤ 3

ċ = 1
Ṫ = 2

Check
c ≤ 1
ċ = 1

Ṫ = −T
2

T ≥ 9

T ≤ 6⇒
c := 0

c ≥ 0.5⇒
c := 0

c ≥ 0⇒
c := 0

Fig. 2: The thermostat example

Notice that on figure 2, the flow function is described by differential
equations (Ṫ represents the derivative of T ). For example, the equation
ċ = 1 defines the linear flow with α = 1, and Ṫ = −T defines the ex-
ponential flow with α = −1. This is the case in most concrete examples
and one could restrict to linear differential equations without real loss of
generality.

2.3 safety

Once the hybrid system is defined, the main goal is to prove its safety,
i.e. that it evolves as we intend it to. This safety is defined by a pred-
icate Safe, or equivalently as its complement, Unsafe. For example,



we may want that our thermostat keeps the temperature above 5◦C
(i.e. Unsafe(l, (c, T )) = T ≤ 5) if the initial temperature is between
5 and 10 degrees, the timer is 0 and the initial location is Heat (i.e.
Init(l, (c, T )) := (l = Heat) ∧ (c = 0) ∧ (5 ≤ T ≤ 10)).

Proving the safety of a given hybrid system might be quite difficult,
even though it is quite simple to prove the safety of the thermostat exam-
ple by hand. But when the number of locations increases, this proof can
become tedious, and we might want a real guarantee of the correctness in
concrete examples. It has been proven [1] that the safety is undecidable
even for very simple classes of hybrid systems (e.g. linear hybrid systems,
with linear reset and flow functions and linear inequalities for the guard,
invariant, initial predicate and unsafe predicate). So we can not hope to
have a complete solver.

Notice that the behaviour of a hybrid system is non-deterministic: for
example, in the thermostat system, one can go from location Heat to
location Cool whenever the temperature is between 5 and 6 and that
there are, in the general case, uncountably many possible traces from an
initial state. This is why a solution to prove its safety is to discretize the
space of the hybrid system, which is the main idea of the method we will
describe in the next section.

3 The abstraction method

3.1 Description of the method

Alur [2] has described a method to prove the safety of hybrid systems. It
consists in reducing the problem of the reachability of unsafe states in the
hybrid system into the reachability of some nodes of a finite graph called
abstract hybrid system, build from the inital concrete hybrid system using
this method:

– divide the point space into a finite number of (simple) subsets called
abstract regions

– build a graph whose nodes are pairs of location and abstract regions
(then called abstract states) and its edges overestimate the concrete
transitions

– define a set of abstract states overestimating the inital states and a
set of abstract states overestimating the unsafe states

– check that the unsafe abstract states are not reachable from the ab-
stract initial states in this graph



Overestimating the transitions means that if there is a (discrete or
continuous) transition from a concrete state A to a concrete state B,
then there exists an edge in the abstract system from an abstract state
containing A to and abstract state containing B.

Then, if a point is reachable in the concrete system, then it is included
in a reachable abstract region. Thus it is straightforward that if the unsafe
abstract states are not reachable, then the concrete system is safe.

Though, it might be difficult to find a good division of the space and
precise enough over-estimators for the transitions. Nevertheless, if the
guard, the invariant and the reset function are linear, a good heuristic [3]
is to divide the continuous space into a regular grid described by the
corresponding linear coefficients.

Alur’s sketch of implementation uses floating point numbers to rep-
resent real numbers, and we might want to use a certified program to
prove the safety of a hybrid system. This method has been implemented
in Coq [5,7] using the the computational power of the constructive real
numbers of the CoRN constructive mathematics Coq library [4]. We will
here discuss some of the difficulties encountered while implementing this
method.

3.2 Constructive reals, approximations and the double
negation

In CoRN, a representation of a real number x is isomorphic to a sequence
of arbitrary rational approximations of x (and this is equivalent to most
definitions of computable real numbers). But we cannot decide whether
a < b or b ≤ a for a, b ∈ R. Then, we cannot decide whether a point of
the continuous set of points is in a given region (typically a rectangle) or
not. Nevertheless, we can say if a given approximation of the point is or
not in the rectangle. But then, different representations of the same real
number might be assigned to different rectangles, and points outside the
rectangle but close enough can be said to be in it. The solution is to use
the double negation monad:

∀x, x→ ¬¬x (returnDN )

∀xy,¬¬x→ (x→ ¬¬y)→ ¬¬y (bindDN )

Indeed, ¬¬(a < b ∨ b ≤ a) is provable, and we can keep doing our
proof under this monad (using bindDN ). We only need the invariant to
be stable (i.e. provably equivalent to its double negation). Typically, non
strict inequalities, or properties with a head negation are stable, but strict



inequalities are not. Then, we can deal with invariants defined by con-
junctions of large inequalities, which a reasonable assumption. Finally, we
can get out of this double negation since our goal is to prove that unsafe
states are not reachable, which is a negation, and is then stable.

Sometimes, this is not possible and we need to use overestimations
parameterized with a precision. An overestimation of a property P is an
element of the (Coq) set {b : bool|b = false→ ¬P}. For example, we can
write a function, returning true at least when the real number represented
by the input is in a given square, and outputs false at least when it is at
distance at least ε of the square, where ε > 0 is the precision. This is an
overestimation of the property ”being in this square”, and we can make
it as accurate as we need, depending on the parameter ε. This parameter
may be critical for the success of the method.

This is useful in particular to inverse the flow function. Indeed, to
overestimate continuous transitions, one need to inverse it to know if, for
two squares and at a location l, does it exist a duration d ∈ R≥0 such that
the image of one square by Fl(., d) intersects the second one. If yes, then
there need to be an abstract transition between these abastract states.

To do so, we assume that the flow function is separable:

Definition 1 Separable function F : Rn → R≥0 ⇒ Rn is separable if:
∀x1, . . . xn, d,F((x1, . . . , xn), d) = (F1(x1, d), . . .Fn(xn, d))

This means that the flow function can be decomposed into one-dimensional
flow functions over each axis. This is restrictive hypothesis, used to sim-
plify the implementation. We believe that it could be removed in the Coq
implementation, but it would be a lot of work.

Then, we assume that each projection of the flow function is range-
invertible:

Definition 2 Range inverse F−1 : OpenRange→ OpenRange→ OpenRange
(where OpenRange describes the set of intervals of R ∪ −∞,+∞ with
bounds included when they exist) is a range inverse function for the func-
tion F if:

∀(I, J : OpenRange), ∀p ∈ I, ∀d,F(p, d) ∈ J ⇒ d ∈ F−1(I, J)

Then, if we only consider separable flow functions (as defined below),
we only have to check if these three intervals overlap to know if there
must be a transition between the squares I1× I2 and J1×J2 (see figure 3
for an illustration):

F−1x (I1, J1) ∩ F−1y (I2, J2) ∩ R≥0 6= ∅



, where Fx and Fy are two one-dimensional flow functions such that
F((x, y), d) = (Fx(x, d),Fy(y, d)). This can also be overestimated with
a fixed precision ε > 0.

I1 J1

I2

J2

A

B

0

t

Fig. 3: Two abstract squares(A and B) the image of A by F intersects B
for some durations included in F−1(A,B).

3.3 Other implementation details

In order to make it easier to use, this implementation includes a small
library of flow functions, in particular those of example 1.

Once the abstract system is defined and the abstract transitions are
computed, we can run a proved Dijkstra’s (breadth-first search) reach-
ability algorithm on the abstract graph, which will tell us whether the
abstract system is safe or not. If it is, then the concrete system is also
safe. If it is not, then one cannot say anything. Next section will describe
what we can do in the last case (and if we are indeed convinced of the
safety of the system).

4 Refining the method

4.1 Refinement idea

If the previous method fails, and it can easily happen even if the system
is simple, then you can use more accurate overestimations (i.e. basically



use a smaller precision parameter ε), but this is, most of the time not
sufficient. Indeed, the key issue is to find the right abstraction (i.e. grid).

The first idea is to rewrite the reachability algorithm in order to pro-
vide a reachability trace (i.e. a path from an initial state to an unsafe one)
for each reachable unsafe state. If the concrete system is safe, then this
means that somewhere on this trace something went wrong, i.e. there
is an abstract state on this path containing (or at a distance smaller
than the precision of the over-approximations) both reachable (concrete)
states and states from where unsafe states are reachable (which we will
call pre-unsafe in the following).

Then, the solution would be to divide each square on this path. But
in the worst case (and in most cases), this will mean that we will use a
grid with about 2n times more squares (where n is the dimension of the
continuous space) if we need to divide the grid everywhere.

This would be a lot of waste of space and computation time and this
is why we use a more flexible abstraction, in order to divide the squares
only where we think it is necessary. In dimension 2, which will be the case
in the following for the sake of simplicity, we will use quadtrees (it would
be octrees in dimension 3 for example). In our point of view, a quadtree
is a tree of arity four, each node being labeled with a point and implicitly
dividing the plane into four sub-planes.

Fig. 4: Example of quadtree (left) and the associated division of the plane
(right).



Figure 4 gives a representation of a quadtree (as a tree and the implicit
division of R2). Notice that replacing a leaf of the tree with a node divides
the corresponding square.

Figure 5 shows an abstraction making some unsafe states reachable
(since the set of reachable concrete states and the set of pre-unsafe overlap
a common abstract region). Then, we can refine the grid as in figure 6,
but the same problem occurs, and another refinement would be neces-
sary, making the number of abstract states increase too much, and so the
computation time.

On the contrary, figure 7 shows a possible refinement of the grid seen
as a quadtree. The refinement is made only where it seems necessary.
We still need several refinement steps, but the number of abstract states
keeps reasonably low.

Fig. 5: The grid of abstract squares (in black), the initial and reachable
states (in blue) and the final and pre-unsafe states (in red). The initial
and unsafe sets are dashed, respectively in blue and red. The bottom-right
square intersects both reachable and pre-unsafe sets, making the abstract
system unsafe.

Fig. 6: The refined grid.
Fig. 7: The refined quadtree (several
iterations).



The refinement with the grid abstraction is about brute force, while
the refinement of the quadtree abstraction is more clever, but might need
a lot more refinement steps. Then, it is not obvious that this abstraction
will be more efficient.

4.2 Further work

I have implemented this new abstraction in Coq (including the new ver-
sion of the proved Dijkstra’s reachability algorithm), trying to make it
equivalent (in terms of provability and efficiency) to the previous grid ab-
straction. There still need to do some example, especially the thermostat
example, in order to compare in practice the relative efficiency of the two
methods.

We also need to try it on examples where the method initially fails,
to do benchmarks on the whole refinement process, comparing the re-
finement of the grid (which might take less refinement steps) and the
refinement of the quadtree which might take less computation time at
each refinement), assuming that the refinement iteration process termi-
nates.

Indeed, if we take an example where the reachable states cover the
half plane defined by x ≤ 0, and the unsafe states are defined by 0 <
x, then there is no such abstraction allowing to prove the safety of the
abstract system. But this corresponds to an unstable system, since in real
systems, measurements cannot be made exactly. This is why the use of
computational real numbers is not restrictive since it models well these
concrete situations.

Then, we may want to have sufficient conditions for the termination of
this method. In particular, we conjecture that for an abstract system with
bounded reachable and pre-unsafe sets, with non zero distance (which
might be the case if we only consider large inequalities in the predicates)
and for a sufficiently precise precision parameter (our previous ε), the
refinement process terminates. This is intuitively justified by the fact that
each time a path from an initial state to an unsafe state is refined, then
somewhere on the path a state containing reachable and pre-unsafe states
is refined, and these two sets will finally be covered by two disjoint sets
of abstract states. Figure 8 shows such a system. The separation distance
(here ε), and a bound on the size of the reachable and pre-unsafe states
could be used to find an upper bound on the number of refinement steps
and more generally on the complexity of the process. Indeed, the more
these sets are far fromeach other, the easier they can be separated by
disoint union of the squares of a quadtree.



ε

pre-unsafe

reachable

Fig. 8: A provably safe system (according to our claim):reachable and
pre-unsafe sets are separated by ε).

5 Conclusion

The whole work of automation of the process is still not sufficient to use
it for real cases. The aim of this work is more intended to show that we
can use constructive real numbers to do proofs by computation in Coq.

More than implementation improvements and benchmarks, this works
needs a few results such as our previous claim. But these conditions re-
quire to know the set of reachable states and pre-unsafe states, which is
almost equivalent to proving the safety by hand.

Then, it would be more interesting to have implicit conditions for the
termination of the process, and having an implicit bound on the number
of refinement steps could also allow to prove the unsafety of the system
in some cases if the abstract system is still unsafe after this number of
steps.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3 – 34, 1995. Hybrid Systems.

2. R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems via
predicate abstraction. Hybrid Systems: Computation and Control, pages 758–819,
2002.

3. R. Alur, T. Dang, and F. Ivančić. Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst., 5(1):152–199, 2006.

4. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN, the constructive Coq reposi-
tory at Nijmegen. In Mathematical Knowledge Management, pages 88–103. Springer,
2004.



5. H. Geuvers, A. Koprowski, D. Synek, and E. van der Weegen. Automated Machine-
Checked Hybrid System Safety Proofs.

6. T. Henzingerz. The Theory of Hybrid Automata y. Technical report, Citeseer.
7. E. van der Weegen. Automated Machine-Checked Hybrid System Safety Proofs.


	Hybrid System verification in Coq

