
Game semantics approach to higher-order complexity

Hugo Féréea

aUniversité de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France
Inria, Villers-lès-Nancy, F-54600, France

CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France

Abstract

Game semantics was initially defined and used to characterize pcf functionals.
We use this approach to propose a definition of complexity for such higher-
order functions, as well as a class of polynomial time computable higher-order
functions.

Keywords: higher-order, complexity, game semantics, bff, pcf

1. Introduction

The complexity of first-order functions (i.e. over countable sets like inte-
gers, binary words, lists, graphs, etc.) has been defined and characterized in
numerous ways. It is also the case to a lesser extent for second-order functions
(i.e. functions defined over first-order functions), with an analogue of polyno-
mial time defined by Mehlhorn [1] and characterized in particular by Kapron
and Cook [2] using the oracle Turing machine model. In particular, this has
applications in computable analysis where the complexity of real numbers, real
functions and real operators has also been studied [3, 4, 5]. However, only
few attempts have been made for larger spaces (mainly functions of order 3 or
more). Most of them [6, 7, 8] are based on the study of the class bff of Basic
Feasible Functionals, which attempts to approach at higher-order what polyno-
mial time complexity is for order 1. As underlined in [9], this class misses some
intuitively feasible functionals and does not provide a general notion of run-
ning time and complexity. The difficulties appearing in defining a higher-order
class of feasible functionals are in particular discussed in [10]. Other solutions
include representing higher-order functions with first-order functions, such as
Kleene associates [11], but the notion of complexity they naturally imply is not
relevant. Our approach also consists in representing objects and functions as
first-order functions, but with more structure. Game semantics allows this by
describing functions as strategies, which can be seen as interactive analogues of
Kleene associates.

A natural way to define complexity is to have a computational model with
a notion of running time and of size for the inputs. The complexity is then
defined as a bound on the running time given a bound on the size of the inputs.
We will define a computational model which accesses its inputs using a game

Preprint submitted to Journal of Computer and System Sciences January 27, 2017

dialogue. The inputs being strategies in some sequential game, we will need to
define the size of such object, from which the notion of complexity will derive.

We will first provide some background for second-order functions and bff
in section 2 and provide in section 3 our presentation of games for higher-
order functions, which were originally defined by Nickau [12] and Hyland and
Ong [13] to solve the full abstraction problem for the programming language pcf
presented by Plotkin [14].

Then in section 4, we will propose our approach for higher-order complexity,
based on the previously defined games. We first give in subsection 4.1 a defi-
nition of size for strategies in such games, which is one of the main ingredients
for the forthcoming definition of complexity. Then we describe two equivalent
notions of complexity for these strategies (and thus for the functions they rep-
resent) based on this notion of size: the first approach (subsection 4.2) is based
only on first-order complexity, whereas in the second one (subsection 4.3) we de-
fine a machine model based on oracle Turing machines, which is better adapted
to the notion of game. Finally, subsection 4.4 defines a class of higher-order
polynomial time computable pcf functions and states several results highlight-
ing the relevance of this class.

Finally, in section 5, we underline the elements in game semantics which
were needed for these definitions, and explain how they could be generalized to
other kinds of games.

2. Background

Throughout this paper, we will be referring to first-order functions as func-
tions of type Nk → N (k ∈ N) and second-order functions as functions of type
(
∏
i≤j(Nki → N))×Nl → N (k, i1, . . . , ij , l ∈ N) and in particular to their respec-

tive corresponding polynomial-time computable classes (fptime and fptime2).
We often work out details for just the corresponding pure types N → N and
(N→ N)→ N.

Second-order computability can be defined using the oracle Turing machine
model, i.e. a machine which can evaluate its first-order input by dynamically
querying its values at a given points. First-order complexity can be defined as
a bound on the the running time of a Turing machine given a bound on the
size of the input. In order to provide an analogue definition for second-order
functions, Kapron and Cook [2] have defined the size of the inputs of oracle
Turing machines, i.e. first-order functions.

Definition 1 (Size of a first-order function). Let f be a first-order func-
tion on finite words, i.e. of type Σ∗ → Σ∗. Its size |f |1 : N→ N is defined by:

∀n ∈ N, |f |1(n) = max
|w|≤n

|f(w)|, (1)

where |w| denotes the size of the binary word w. By abuse of notation, we
also define the size of a first order function g : N → N on integers as the
size |f |1 of a function f : Σ∗ → Σ∗ on binary words encoding g in this sense:

2

∀n ∈ N, bin(f(n)) = g(bin(n)), where bin is the standard binary encoding of
integers into binary numbers.

Together with the oracle Turing machine model, this notion allowed them to
define second-order complexity. Note that a complexity bound is now a second-
order function (just as well as a complexity bound for a first-order functions is
itself a first-order function). They also have defined a second-order polynomial
time complexity class, (which we will denote by fptime2) using second-order
polynomials, i.e. polynomials with first-order variables.

This notion is quite robust, since it extends nicely fptime (the restriction of
fptime2 to first-order function is fptime and it is stable by composition) and
the original definition from Mehlhorn is an analogue of Cobham’s [15] charac-
terization of fptime using a function algebra.

The generalization of this function algebra by Cook and Urquhart [16] to
all finite types, called pvω, is defined by the closure of fptime by several basic
operators (composition, expansion, application) and a second-order bounded
recursion on notation:

R(x0, F,B, x) =

x0 if x = 0

t if x > 0 and |t| ≤ B(x)

B(x) otherwise,

where t = F (x,R(x0, F,B, bx2 c)).

The functions defined by this algebra are called the Basic Feasible Function-
als (bff). This class is also robust and all its elements are intuitively feasible,
in the sense that they should all belong to an analogue of fptime and fptime2

at higher types.
However, this class is not complete with respect to this criterion. Irwin,

Kapron and Royer [8] provide an example of third-order function which is intu-
itively feasible but is not in bff.

Example 1. Let fx(y) = 1 if y = 2x and 0 otherwise. The type 3 function
Φ : ((N→ N)→ N)× N→ N is defined by

Φ(G, x) =

{
0 if G(fx) = G(λy.0)

1 otherwise

is basic feasible: it can be computed by applying FΦ to two polynomial time
computable functions (fx being polynomial time computable with respect to |x|)
and comparing the results. However, the function Ψ defined by

Ψ(G, x) = 2x · Φ(G, x) =

{
0 if G(fx) = G(λy.0)

2x otherwise.

turns out not to be in bff. The intuition is that in the second case, the size of
the output is exponential in the size of x. However, one argument to say that
it is feasible is that if we fall into the second case, it means that G was able to

3

distinguish between fx and λy.0. But these functions only differ at 2x, which
means that G has ”queried” its inputs at this point, and since writing down this
query takes |2x| steps, FΦ’s computation must be at least this long. From this
point of view, the time needed to compute Ψ(G, x) is at most twice the time to
compute Φ(G, x), thus if Φ is considered feasible, so should Ψ.

In addition, bff provides only a single complexity class and not a general
notion of complexity (which would allow us to define exponential time, space or
non-deterministic complexity classes for example).

One of the main missing elements for a higher-order notion of complexity is
the notion of size. Indeed, the generalization of definition 1 to all finite types is
not meaningful. It would only bound the size of the values taken by the function
and not the amount of information it requires on its input to provide an answer,
in other words its modulus of continuity (see definition 14). For instance, in the
Ψ function from example 1, the modulus of the functions F should be taken
into account: if it has a big modulus of continuity, then a computational model
should be given more computation time.

In the following, we propose a solution to this problem, by seeing a compu-
tation as a dialogue between the function and its inputs, allowing to formalize
claims such as: F ”has to evaluate its input at 2x”. Note that Nickau [12]
already mentioned that game semantics was probably a good model for com-
plexity. Also, Buss and Kapron [17] have used this idea of dialogue in the
context of second-order complexity. In particular, they define the length of
a dialogue, which is really close to our definition of size of a play (see subsec-
tion 4.1). Finally, Royer [18] has used this approach to express the infeasibility of
a higher-order functional, without using a generic notion of complexity though.

3. pcf-games

Higher order computations have been defined in many, often incomparable
ways, but rarely with complexity in mind (see [19] for a quite exhaustive survey).
Game semantics was initially used to provide a fully abstract semantics to pcf
by Nickau [12] and Hyland and Ong [13] independently. It can be described as
a way to represent computational processes as the confrontation of players in a
game, like a program against its environment or parameters. We give here our
own presentation of these games, which we will call pcf-games, which is inspired
from the original ones as well as Gabbay and Ghica’s nominal formalism [20],
with effectivity in mind.

3.1. Arenas

The first element of this definition, namely the notion of arena, describes
the possible actions (called moves) for each player, as well as rules, which define
which moves can be played in a given context.

Definition 2 (Arena). An arena A = (Q,A, λ,`, I) is defined by:

4

• two disjoint sets Q (questions) and A (answers) which represents the
set M = Q ∪ A of moves;

• a polarity function λ : M → {O,P}. Then, every move m is associated
with the player (if λ(m) = P) or with the opponent (if λ(m) = O). We
write O⊥ = P and P⊥ = O and if A ⊆ M, we will denote by AP (resp.,
AO) the set of moves in A belonging to the player (resp., the opponent);

• an enabling relation `⊆ Q ×M which defines a graph structure over
moves. If m ` m′ we say that m enables m′ and a move can be enabled
only by a question belonging to the other player:

q ` m =⇒ λ(q) = λ(m)⊥.

We will also denote by `∗ the transitive closure of ` and we will say that
m recursively enables m′ if m `∗ m′.

• a set of initial questions I ⊆ QO owned by the opponent and which
are not enabled by any other move. We will furthermore call F the set of
final answers, i.e. answers enabled by initial questions:

F = {a ∈ AP | ∃i ∈ I, i ` a}.

Intuitively, initial questions will be able so start a dialogue, whereas final answers
will end it.

In the following, m will implicitly represent a move, q a question, a an
answer, and i an initial question.

The pcf functions have finite types over natural numbers, i.e. of the form:

τ ::= τ → τ | β

where β denotes one of the two base types ι and o which will be interpreted as
the set N of integers, and B of booleans. In the following, we may confuse these
base types with their corresponding sets.

When defining with complexity, we don’t want to deal with partial evalua-
tion. For example, it is common to define the max function and its complexity
as functions with two arguments (i.e. of type N×N→ N) rather than as func-
tions from integers to functions (i.e. of type N→ (N→ N)). This is why we will
represent these simple types in an uncurried style, with the following notation:

τ1 × · · · × τn → β = τ1 → (· · · → (τn → β) . . .).

Every finite type can indeed be described as a type of this shape, and the
base types are in particular obtained with n = 0.

We may mostly focus on the base type ι as cases for o are often special cases
for ι.

5

We will call the order of a type its maximal number of nested exponentials.
In the type τ1 × · · · × τn → β, the types τ1, . . . τn will be called its argument-
types. In examples, we will mostly focus on pure types, i.e. types with only one
(pure) argument-type.

We will define games for each of these finite types, so we first need to define
the arena Aτ associated to a finite type τ by induction on τ .

Definition 3 (Arenas for base types). Figure 1a shows a representation of
the arena for natural numbers: the exponents indicate the polarity, the arrows
the enabling relation, and the circled moves are the initial questions.

Intuitively, a player representing a number n will answer rn whenever its
opponent asks him its value (i.e. by playing q).

The arena AB for base type o is similar to AN but only has two answers,
representing the two boolean values.

Then, we recall the definitions (from [20] for example) for the exponential
arena from two given arenas as described in figure 1b.

aP0 aP1

qO

.aPn

(a) The arena AN associated with the base
type ι.

A⊥
σ

Aτ

. . .

. . .
i1 in

i′1 i′k

(b) The arena Aσ→τ constructed from the
arenas Aσ and Aτ .

Definition 4 (Exponential arena). The arena Aσ→τ is also built from the
disjoint union of Aσ and Aτ . Its initial questions are those which were initial
in Aτ and they enable the initial questions in Aσ. Moreover, the polarity of the
moves in Aσ is reversed. This construction is represented in figure 1b, where
A⊥ represents the arena A whose polarities have been reversed. More precisely:
Aσ→τ = (Qσ tQτ ,Aσ t Aτ , λ

⊥
σ q λτ ,`σ ∪ `τ ∪(Iτ × Iσ), Iτ).

The arenas built this way for each finite type are finite trees whose depth is
the order of the type.

We can now have a look at the first simple types and see how their are-
nas can be seen as way to present the possible interactions between existing
computational models (mainly machine models) and their inputs.

Example 2 (Arena AN→N). The arena AN→N (figure 2), represents the struc-
ture of functions of type ι → ι. It can be seen as a way to describe the inter-
actions in a Turing machine: when the machine is executed (i.e. the opponent

6

aO0 aO1

qP

.
aOn

a′P0 a′P1

q′O

.
a′Pn

Figure 2: Representation of arena AN→N.

asks for its value by playing q′), the machine implicitly asks (question q) the
value (answer an) of its input, which is then written to the input tape. The
machine can then answer to the initial question, by providing the result on the
output tape (i.e. playing some answer a′n′). The enabling relation (represented
in the figure by the arrows) express the constraints on the possible actions of the
machine and its oracle: the machine can only terminate or do an oracle call
after it has been started (arrows starting from q′), and the oracle can provide
an answer only if it has been queried by the machine (arrows starting from q).

Example 3 (Arena A(N→N)→N). Similarly, we can go one order higher and
define the arena A(ι→ι)→ι (figure 3). It can be seen as a way to represent the
interactions between an oracle Turing machine and its input in the following
way. When started (question q′′), the machine can do several oracle calls, i.e.
play a question q′, and answer some an to an implicit question q from the oracle
(where n is the oracle query). Then the oracle can answer the question q′, i.e.
give some value a′k (the oracle answer) to the machine. This is either repeated
indefinitely, or the machine eventually outputs a result after a finite number of
such oracle calls, i.e. answers to the initial question with an move a′′l , which is
the result of the computation.

aP0 aP1

qO

.
aPn

a′O0 a′O1

q′P

.
a′On

a′′P0 a′′P1

q′′O

.
a′′Pn

Figure 3: Representation of arena A(N→N)→N.

7

3.2. Plays

A game will not only be characterized by its possible moves, but by the
allowed successions of moves called plays. As moves will have to be enabled by
other moves, we will make this reference to another move explicit using names.

Definition 5 (Plays). Given an arena A, a named move is a move m associ-
ated with an integer α denoted this way: m[α]. A play is then a finite sequence
of named moves. As in nominal game semantics (of which our presentation is
only a simplified version), we will call α the justifying name of the named
move.

We may write m[α] ∈ p if this named move is in the play p and we say that
a named move m[α] justifies a further named move m′[β] in the play p if m[α]
is in position number β in p and m′ is enabled by m in the arena.

In the following, α, β, . . . will implicitly denote names, and p, p′ . . . plays.
We may also use moves and named moves indifferently when the value of the
name is not relevant. We will also denote by pα the move (or named move) in
position α in p.

In addition, we will say that a question q[α] in a play p is closed if it justifies
a further answer a in p.

In this case, we say that a answers this question and if no such a exists, we
will say that q is open in p.

In order to define a game, we need to describe the set of allowed plays, which
can be done by imposing some conditions on plays. The following rules will be
useful to define pcf-games.

Definition 6. If p is a play in an arena A, we say that p is

• justified if every non-initial move is enabled by a previous move in p:

∀m, p′, α,m 6∈ I ∧ p = p′m[α] · · · =⇒ p′α ` m;

• well-opened if contains only one initial move, at the beginning of p ;

• alternating if any two consecutive moves belong to different protagonists:

∀p, α,m′, β, p = . . .m[α],m′[β] · · · =⇒ λ(m) = λ(m′)⊥;

• strictly scoped if answering a question prevents further moves to be
justified by this question. In particular, a question cannot be answered
twice ;

• strictly nested if pairs formed by questions and their corresponding an-
swers form a valid bracketing.

Remark 1. In justified plays, initial moves do not need to be justified, so the
value of their justification name is not relevant and we may omit it.

8

Remark 2. In a justified alternating play, the polarity of the last move is
characterized by the parity of the number of moves. In this case, we will call a
player (resp. opponent) play any such play ending with a player (resp. opponent)
move and if P is a set of plays, we will denote by PP (resp. PO) the corresponding
subset.

Remark 3. This is a particular application of nominal game semantics, where
each move in a play is implicitly denoted by its position. Note that more clever
naming systems could be used, especially if they manage to use smaller names,
for example by reusing names when they can no longer be used (which is the case
when the strictly scoped rule is implied). This idea can be seen as dynamical
memory management, and the reader can refer to [21] for a study on the issue of
name reuse. However, such a choice is not restrictive for our further definition
of complexity.

3.3. Innocent strategies

We can now define strategies, that is deterministic decisions taken by a
player, given its current knowledge of the play.

Definition 7 (Strategy). Given an arena and a set P of plays, a strategy s is
a partial function from a subset dom(s) of valid plays (P), produces a named
move which extends it into a valid play:

∀p ∈ dom(s), (p :: s(p)) ∈ P,

where :: is the finite sequence extension operator defined by:

(m1, . . . ,mn) :: mn+1 = (m1, . . . ,mn,mn+1).

Now, one of the major characteristics of the strategies used for pcf func-
tions is their innocence property: their output should depend only on partial
knowledge on the input play, called view.

We remind the notion of innocent strategy which was independently intro-
duced by Hyland and Ong [13] and Nickau [22].

Definition 8. Let τ = τ1 × · · · × τn → β be a finite type. If p is an opponent
play in Aτ satisfying the properties given in definition 6, then its view view(p)
can be defined this way, starting from the end of p:

• if we meet an open player’s question q justified by a player (resp. oppo-
nent) question q′, then all moves between q′ and q are removed from p
and all further justifying names are modified accordingly;

• if we meet a player’s answer a answering an opponent (player) question
q, then all moves between q and a are removed from p and all further
justifying names are modified accordingly;

• in both cases, we continue this process with the move placed to the left
of q.

9

If the play indeed satisfies the aforementioned rules, we can easily see that we
stop when meeting the initial move and that view(p) is an opponent play still
satisfying these rules.

An innocent strategy s is a strategy which depends only on the current
view of the play:

∀p ∈ dom(s), s(p) = s(view(p))

Intuitively, it implies that if the opponent has answered a player’s question,
then the player can only take into account the answer and not the intermediary
dialogue which was used to obtain this answer.

We now have all the necessary definitions to define pcf-games.

Definition 9 (pcf-game). For every finite type τ , the corresponding pcf-
game Gτ is given by the set Sτ of innocent strategies over alternating strictly-
scoped strictly-nested well-opened plays whose answers are justified by last open
question, over the arena Aτ .

In the following, we will always implicitly restrict to this definition ; in particu-
lar, every strategy will be innocent and restricted to the previously defined set
of valid plays.

Also, if τ = τ1×· · ·×τn → β, then Gτ1 , . . . ,Gτn will be called the sub-games
of Gτ and strategies in these games will be called argument strategies for any
strategy in Gτ .

3.4. Confrontation

We can now define the confrontation of a strategy of an exponential type
against strategies for each of its argument-types. This will allow us to relate
these strategies with functions of the corresponding type.

First, notice that a play in the arena of a given type τ1 × · · · × τn → β is
mostly composed of plays in the arenas of its argument-types (τ1, . . . , τn).

Indeed, given the definition of arenas for finite types (definitions 3, and 4),
the moves enabled by the initial move are either final answers or questions which
are initial in one of the arenas A⊥τj composing Aτ . A well-opened justified
play p in Aτ can thus be seen as an initial move followed by intricate well-
opened justified plays in some of the arenasAτj (possibly several for each arena),
possibly ended by a final answer. If in addition this play is a player play not
ending with a final answer, then its last move m belongs to some Aτj for some j.
In this case, m is recursively justified by a question ij which is initial in Aτj
and we can define a new play p′ in Aτj (called the current sub-play of p) by
selecting all the moved in p which are recursively justified by ij and by changing
their justification names accordingly. In addition, this play verifies the rules of
definition 6 as soon as p does.

Conversely, if such a sub-play is extended by a additional move m′[α] in Aτj ,
p can itself be extended by a move m′[β] where β points to the same move in p
as α does in p′. Once again, the rules of the game are verified in this new play
as soon as they were in p and in p′ :: m′.

10

These constructions (which can be easily carried out in polynomial time), are
key tools for a strategy in interacting with argument strategies (i.e. strategies
for argument-types).

Definition 10 (Confrontation). Let τ = τ1 × · · · × τn → β be a finite type.
Given a strategy s in Sτ , and a strategy sj in each Sτj , the confrontation
between s and the sj is the process which incrementally builds a valid play p in
Gτ in the following way, where p is considered as a variable, and the symbol ←
denotes imperative-style assignment.

The play begins with the only initial question i in Aτ : p ← i. Then, the
strategy s plays alternatively against one of the sj as follows.

If the current play is p, then s plays by adding the named move s(p) to p:
p ← p :: s(p). If this move is of the form a[0], i.e. if s has answered the initial
question, then the confrontation ends. Otherwise, the move s(p) belongs to the
arena Aτj for some j. Then, if sj(pj) is defined (where pj is the current sub-
play), it is converted to a named opponent move in Gτ and added to the end
of p.

Given a strategy s ∈ Sτ , this operation defines a partial function from strate-
gies in sub-games to final moves: s[] : Sτ1×· · ·×Sτn ↪→ F: if s ends its confronta-
tion against si with the final answer a, then s[s1, . . . , sn] = a and a is called
the result of the confrontation and if no such a exists, then s[s1, . . . , sn] is
undefined.

Finally, the complete play p, when it exists, is called the history of the
confrontation and we will denote it by H(s, s1, . . . , sn).

Remark 4. There are two ways a confrontation can fail to terminate: either
one of the strategies is undefined on its current play, or the dialogue goes on
indefinitely.

Remark 5. Our notion of confrontation is nothing new. Indeed, Hyland and
Ong define very similarly a strategy composition, which from a strategy for
type τ → σ and a strategy for type τ defined a strategy for type σ.

Thus s[s1, . . . , sn] is (almost) equal to the successive compositions of s with
s1, . . . , sn, i.e. until we obtain a strategy over a base type. In other words,
confrontation is to full application what strategy composition is to partial appli-
cation.

Now we can make a link between strategies in these games and higher type
functions. We will consider partial functions, and ⊥ will denote the undefined
value.

Definition 11. A strategy s in Sτ represents a partial function of type τ in
this sense: if τ = τ1 × · · · × τn → β, then s represents a partial function F : τ if
for all strategies s1, . . . , sn representing functions f1 : τ1, . . . , fn : τn, F is well
defined on (f1, . . . , fn) if and only if the confrontation between s and s1, . . . , sn
terminates, and in this case the final answer encodes F (f1, . . . , fn) (i.e. it is the
final answer of the form aF (f1,...,fn)).

11

Example 4. • On the play q composed of only the initial question, a strat-
egy in SN (resp. SB) is either undefined (and thus represents the undefined
element) or equal to some final answer an[0] for some n ∈ N (resp. n ∈ B)
and thus represents the integer (resp. boolean) n.

• The confrontation of a strategy s in SN→N against a strategy sn in SN
which represents an integer n can fail to terminate if s indefinitely asks
the question q or if it is undefined at some point. The function s[] defines
a partial function f of type N → N defined by ∀n ∈ N, s[sn] = a′f(n). If
the confrontation terminates, then it is of the form:

q′, q[0], an[1], . . . , q[0], an[2 ∗ k + 1], a′f(n)[0]

• Similarly, a strategy sF in S(N→N)→N defines a partial second-order func-
tion F in the sense that if sf represents a partial first-order function (as
defined above), then sF [sf] = a′′F (f). In this case, the history of the con-
frontation is of the form:

q′′, p1, . . . , pn, a
′′
F (f)

where the pi are plays similar to the one in the previous point (with shifted
justifications), i.e. even prefixes of plays of the form:

q′[0], q[ki]axi [ki + 1], . . . , a′f(xi)
[ki]

This history can be seen as the description of the behavior of an oracle
Turing machine computing F on oracle f , where x1, . . . xn denote the
oracle calls (and f(x1), . . . f(xn) the corresponding oracle answers).

3.5. Computability

In order to define computable strategies, we need an encoding for named
moves and plays in pcf-games. There is indeed, for a given type τ , a natural
binary encoding of moves in Aτ : there are a finite number of questions which
are thus encoded by words of given length; and there are only a finite number of
answers representing the integer n (an, a

′
n, . . . in the examples) which can then

be encoded by words of length O(log2(n)). Finally, justifying names can be
encoded using the usual binary encoding of integers and thus a basic encoding
of plays also follows and will be denoted by enc in the following.

Of course, different encodings (over the same game) can induce different
notions of computability and complexity, in the same way that using unary
rather than binary representation of natural numbers leads to a different notion
of first-order complexity. However, any canonical encoding such as the previous
one would lead to the same notion of computability and complexity for large
enough complexity classes (especially the polynomial time class which we will
define later). A more clever encoding will only be necessary to study sub-linear
complexity classes, in which case we will also require applying remark 3 which
we will not do here for simplicity.

Such an encoding allows us to see a strategy as a first-order function on
binary words.

12

Definition 12 (Computable strategy). A strategy s is computable if there
exists a computable function fs : Σ∗ → Σ∗ on binary words which maps the
encoding of every play in the domain of s to the encoding of its image by s:

∀p ∈ dom(s), fs(enc(p)) = enc(s(p)).

By extension, we will say that a higher-order function is computable if it is
represented by a computable strategy. It is clear that the computable strategies
in the games SN→N and S(N→N)→N (see example 4) represent exactly the usual
partial sequential computable functions of order 1 and order 2 respectively.

Remark 6. Given s, s[·] can be seen as a second-order function on binary
words. Moreover, if s is computable in the sense of definition 12, then s[·]
can be seen as a (partial) computable second-order functional. Indeed, we can
build an oracle Turing machine from a Turing machine computing fs, which
on oracles representing functions fs1 , . . . , fsn internally computes the history of
the game by simulating the process of confrontation: it iteratively computes the
next move to play (fs(p)) and add it to the current play (initially containing the
initial question), then stops if it is a final answer (and output it), or queries the
right oracle (depending on s(p)) on its current knowledge of the play.

In terms of computability, these games capture exactly pcf.

Theorem 1 ([22, 13]). The partial functions represented by computable strate-
gies in pcf-games are exactly the pcf-computable functionals.

4. Complexity

We will now define a notion of complexity for strategies in our games. For
this, as explained earlier, we will need to provide a notion of size for the ”inputs”
of such strategies, which are themselves strategies for pcf-games. Then we
will define their complexity using two distinct approaches and finally propose a
notion of polynomial time complexity for such strategies and, by extension, for
the functions they represent.

4.1. Size of a strategy

We define the size of a play as the size of its binary encoding and also
denote it | · | by extension.

Note that, this is polynomially equivalent to the sum of the sizes of its moves
or named moves given our choice for names (as positions). This remark shows
that, as stated earlier, this choice was not really critical, and any other reason-
able choice could have been made, as soon as we are interested in complexity
classes closed by polynomial composition.

We can now define the size of a strategy s in Sτ as a function of type τ
together with a partial order 4τ on such functions. Intuitively, given a bound
on the size of a strategy in a sub-game, it bounds the size of the confrontation
of s against this strategy.

13

For the games previously used as examples, this definition of size of strategies
is related to the size of the function they compute. In particular, as we will see
in proposition 1, the size of a strategy in SN is roughly the binary size of the
integer it represents, and the order 4N is defined by comparing the size of the
binary representation of integers. Similarly, the size of the strategy representing
a boolean number has constant size and 4B is the trivial equality order.

Definition 13 (Size of a strategy). The size function ‖ · ‖τ : Sτ → τ of
strategies in Sτ as well as partial order 4τ on functions of type τ are defined by
induction on τ . Note that the base cases are handled by the following general
case with n = 0.

If τ = τ1 × · · · × τn → β, and s ∈ Sτ then:

‖s‖τ = λb1 . . . λbn. sup{|H(s, s1, . . . sn)| : ∀1 ≤ i ≤ n, si ∈ Si ∧ ‖si‖τi 4τi bi}

i.e. given input bounds b1, . . . , bn, it is the maximal size of the history of the
confrontation of s against strategies whose size is smaller than these bounds.

Additionally, for all F,B : τ , we say that F is smaller than B (F 4τ B) if:

∀b1, . . . , bn,∀s1, . . . sn,‖s1‖τ1 4τ1 b1 ∧ · · · ∧ ‖sn‖τn 4τn bn =⇒
F (‖s1‖τ1 , . . . , ‖sn‖τn) ≤ B(b1, . . . , bn)

Proposition 1. In the game GN (which is the base case), every integer n has a
unique strategy whose size is bounded by c0 · |n|, for a constant c0. Conversely,
any strategy of size k represents an integer whose binary size is smaller than k.

Proof. The confrontation of a strategy representing an integer n against no
strategy (n = 0) leads to a history q, an[0], whose encoding has a binary size
roughly bounded by the binary size of n.

The converse is immediate, since the confrontation of any bounded-size strat-
egy terminates, i.e. ends with an answer an with |n| ≤ k.

Similarly, a first-order function f has a strategy whose size is roughly the
size of f , i.e. |f |1, as defined by Kapron and Cook (see definition 1). In other
words, the size of such a strategy bounds the size of its output given a bound
on the size of its input.

Proposition 2. Every total function f : N→ N has a strategy in SN→N whose
size is bounded by λk.c+ k + |f |1(k) for a constant c independent from f .

Conversely, |f |1 4N→N λk.‖sf‖N→N(c0 · k) for every strategy sf represent-
ing f .

Proof. We consider the canonical strategy sf , which queries its input x (i.e.
plays q[0] and gets an answer ax[1]), and then answers the value of f on this
input (i.e. plays a′f(x)[0]). The confrontation of sf against a strategy in SN
of size bounded by k (thus representing an integer x of size smaller than k
according to proposition 1) produces a history of the form q′, q, ax, a′f(x). The

14

size of this play is bounded by c+ |x|+ |f(x)| for some constant c. Maximizing
over all argument strategy of size bounded by k provides the first result.

For the second result, it is sufficient to notice that proposition 1 implies
that {s ∈ SN | ‖s‖N ≤ c0 · k} contains all the strategies representing integers of
size bounded by k. Their history against sf then contains a′f(n) for an integer

n of size bounded by k. Since |a′f(n)| ≥ |f(n)|, we have ‖sf‖N→N(c0 · k) ≥
max|n|≤k |f(n)| = |f |1(k).

Note that there are strategies whose size is not bounded. However, strategies
for first-order functions have bounded size if and only if they represent a total
function (due to the definition of 4).

For strategies representing second-order functions, the notion of size takes
into account the notion of modulus of continuity and thus not every function
(not even total function) is represented by a strategy.

Definition 14 (Modulus of continuity). A total functionB : (N→ N)→ N
is a modulus of continuity of F : (N→ N)→ N if:

∀b, f, g, (|f |1, |g|1 4N→N b ∧ ∀n ≤ B(b), f(n) = g(n)) =⇒ F (f) = F (g).

Proposition 3. If F : (N→ N)→ N is represented by a strategy in S(N→N)→N
of size bounded by B : (N → N) → N, then λb.2B(λk.c+k+b(k)) is a modulus of
continuity for F (where c is a constant independent from F).

Proof. Let f, g, b : N→ N such that |f |1 and |g|1 are bounded by b and are equal
on all inputs of size bounded by 2B(λk.c+k+b(k)). According to proposition 2, f
and g have strategies of size bounded by λk.c+k+ b(k). The size of the history
of the confrontation of the strategy of size B representing F against each of
these two strategies is bounded by B(λk.c+ k + b(k)) by definition. Then, this
history can not contain answers of size greater than B(λk.c + k + b(k)). This
implies that the strategy for F is not able to evaluate the values of f and g
for inputs whose size are larger than this bound. Since it can not distinguish
between these two strategies, then the histories are equal and in particular the
results of the confrontations are equal, which implies that F (f) = F (g). Then,
2B(λk.c+k+b(k)) is indeed a modulus of continuity for F .

The converse is also true: having a modulus of continuity implies having a
strategy with bounded size.

Proposition 4. If F : (N → N) → N has a modulus of continuity, then it is
represented by a strategy whose size is bounded.

Proof. If F is a function with modulus B we can define as strategy s for F this
way: the strategy asks for the successive values of its argument (or opponent)
from 0 up to the minimal n ∈ N such that F is constant on the set of functions
with the same values on {0, . . . , n} and gives this constant as final answer.

Let sf be a strategy computing a function f : N→ N. The history H(s, sf)
is composed of n evaluations of f for some n ∈ N. Each evaluation accounts for a

15

size of at most ‖sf‖(c0 · |n|) according to proposition 1. Also, n is itself bounded
by B(|f |1) by definition of the modulus, which itself can be bounded with respect
to ‖sf‖ according to the second part of proposition 2 and by monotonicity of B.
Finally, the size of the final answer (corresponding to F (f)) is bounded (up to
a constant) by max|g|1≤|f |1 F (g), which itself can be expressed with ‖sf‖. The
size of the whole history is then bounded with respect to the size of sf , which
allows us to conclude. Note that an explicit bound can be expressed, but it is
of no use here.

Together, these propositions allow us to characterize the second-order func-
tions which can be represented by finite size strategies (i.e. in S(N→N)→N).

Theorem 2. A function of type (N → N) → N is represented by a strategy
in S(N→N)→N with a well-defined size if and only if it is a continuous function
defined on every total input.

Remark 7. Seen as a class of functions, the set of bounded size strategies can
be seen as hereditarily total functions. Indeed, if the size of s is bounded, then
for every bounded-size strategy s′, the confrontation between s and s′ terminates,
and in particular, the size of the result is bounded by the composition of the sizes
of the strategies |s[s′]| ≤ ‖s‖(‖s′‖).

4.2. Accumulated complexity

The notion of size of the inputs was the main missing point in the general
definition of complexity. Now that we have such a notion on strategies, we can
define a first notion of complexity.

The first definition we can think of uses the representation of a strategy as
a first-order function over binary words which allowed us to define the notion
of computable strategies (definition 12). However, defining the complexity of
a strategy as the complexity of the corresponding first-order function is not
meaningful. Indeed, a strategy can force the dialogue to be as long as it wants,
in particular until the time to compute a given move is polynomially bounded
in the size of the current play (see example 5).

Example 5. For all exponential time computable f : N→ N, there is a strategy
s representing the second-order function λg.f(g(0)) such that its associated first-
order function is polynomial time computable.

Indeed, the strategy s can query the successive values of its input g until the
size of the current play is greater than 2|g(0)|, before giving the final answer cor-
responding to f(g(0)). Every computation made by s was polynomially bounded
with respect to the size of its input (the current play), however, the length of the
dialogue is exponential, which allows s to compute a high complexity function.

The following definition proposes to define the complexity as a measure of the
time required to simulate the confrontation. To do so, it adds up the time needed
to compute every move of the history. Note that, as well as the complexity of
first and second-order functions is respectively a first or second-order function
itself, the complexity of a strategy in Sτ is a higher-order function of type τ .

16

Definition 15 (Accumulated complexity). A strategy s in a game Gτ is
computable in time T : τ if there is a function T0 : N → N such that s is
computable (as a first-order function on binary words) in time T0, such that for
all strategies s1, . . . , sn in the sub-games of Gτ with

H(s, s1, . . . sn) = m1,m
′
1, . . .mt,m

′
t,

we have ∑
1≤j≤t

|mj |+ T0(enc(m1,m
′
1, . . . ,mj)) ≤ T (‖s1‖τ1 , . . . , ‖sn‖τn). (2)

This is equivalent to say that the running time of the oracle Turing machine
computing s[] (described in remark 6) on oracle si (i.e. on the corresponding
first-order representation) is bounded by T (‖s1‖τ1 , . . . , ‖sn‖τn).

This definition measures the cost of the moves played by the opponent (sim-
ilarly as in the definition of the running time of an oracle Turing machine) as
well as the time needed by the strategy to play each of its own moves.

This definition is polynomially equivalent to the usual definitions on first
and second-order functions and in particular it defines the same polynomial
time complexity classes.

Proposition 5. fptime (resp. fptime2) is the set of functions of first-order
(resp. second-order) type τ represented by a strategy in Sτ whose accumulated
complexity is bounded by a polynomial (resp. second-order polynomial).

Proof. For first-order (resp. second-order) functions, this complexity measure
is larger than the running time of a Turing machine (resp. oracle Turing ma-
chine) computing the function. Conversely, in the case of first-order functions,
it exceeds it only by the sum of the sizes of the inputs, which keeps the com-
plexity polynomial. In the case of second-order functions, each element of the
sum is bounded by the total running time of an oracle Turing machine com-
puting the function (plus the size of the possible first-order inputs) ; and t is
bounded by the number of oracle calls (plus the number of first-order inputs),
which itself is polynomially bounded in the size of the inputs, which makes it
overall quadratically equivalent to the usual complexity.

Already at order 1, the size (as defined by Kapron and Cook) of a function is
a lower bound on its complexity, and this result can be generalized to strategies.

Proposition 6. If s is a strategy in Sτ whose accumulated complexity is bounded
by B, then ‖s‖τ 4τ B.

Proof. This is immediate from the definition of accumulated complexity. Indeed,
it bounds the sum of the sizes of the moves from the opponent, as well as the
sum of the times to compute the player moves, which themselves bound the size
of these moves. The accumulated complexity then bounds the sum of the sizes
of the moves in the history given a bound on the size of the argument strategy,
which is the definition of the size given in definition 13.

17

Remark 8. Proposition 6, together with remark 7, implies that the strategies
with well-defined complexity are in particular defined on argument strategies
which have well-defined complexity and this class of strategies is thus also hered-
itarily total in this sense.

Conversely, the size function is in some sense the greatest lower bound on the
complexity. More precisely, if we define the relativized accumulated com-
plexity of a strategy s as the accumulated complexity of a machine computing
s with the help of an arbitrary first-order oracle, then the following proposition
holds.

Proposition 7. Given a strategy in Sτ , its relativized accumulated complexity
is bounded by T : τ if and only if its size is bounded by T .

Proof. Proposition 6 is also true if the machine has access to an additional
oracle, which proves the first implication.

Conversely, if fs : Σ∗ → Σ∗ is the first-order function associated to s ∈ Sτ ,
then s is computed by a machine with oracle fs and whose complexity is bounded
by T0 = λn.n. Then, the left side of equation 2 is exactly the size of the history,
which proves that the accumulated complexity is exactly the size of s.

This proposition helps to understand these new notions of size and com-
plexity. Indeed, it shows that a strategy can have a high complexity for two
very different reasons: either it encodes a intrinsically difficult problem which
requires a lot of standard computation time (represented by T0 in definition 15),
or it requires to know a large amount of information on its arguments (which
web obtain when we remove the standard computation time by using an oracle),
and this amount is what we defined as its size.

4.3. Game machines

The accumulated complexity corresponds to the usual notions of complexity
at orders 1 and 2, which is a good sanity check. However, it may seem unnatural
as it does not consist in a bound on the running time of a machine, but rather in
the sum of several executions of the machine. In order to underline the validity
of such a notion, we define a machine model which is more adapted to games
and which can be seen as a generalization of the oracle Turing machine model.
The notion of complexity induced by this model will be polynomially equivalent
to the accumulated complexity.

Definition 16 (Game machine). Given a finite type τ = τ1 × · · · × τn → β,
a game machine on Gτ is a kind of oracle Turing machine with one initial state
and n oracles. Starting the machine in its initial state can be seen as starting
a confrontation with the initial question. When the machine makes an oracle
call, its special tape contains the encoding of a move m (we can say that the
machine plays m). If it is the encoding of a final answer, then the computation
stops and this answer represents the result of the computation. Otherwise, if
this moves concerns some argument numbered i, then the corresponding oracle
writes then encoding of a move on the tape and the computation goes on.

18

We will say that an oracle represents a strategy si (in Sτi) if for each oracle
call, the oracle answer is the encoding of the named move m′ obtained (as
described in the definition of the confrontation) by applying si to the current
sub-play and changing its justifying name accordingly.

Similarly, a machine is said to compute a strategy s if each of its oracle calls
is the encoding of m = s(p) where p is the current play, and stops on a final
answer which encodes the result of the confrontation against the strategies given
as oracle.

This model does not bring anything new in terms of computability.

Proposition 8. A strategy is computable as a first-order function if and only
if it is computed by a game machine.

Proof. Given a game machine computing a strategy, we can build a standard
Turing machine which computes the associated first-order function. Given the
encoding of a play as input, it will simulate the game machine by replacing the
oracle (playing the opponent strategy) by the list of opponent’s moves in the
play until all these moves have been played. Then, the machine outputs the
next oracle call of the game machine, or its output if it terminates.

Conversely, we can build a game machine which stores the current play on
a tape, and each time it must play (i.e. make an oracle call), it simulates a
Turing machine computing s on this current play in order to get the right move
to play. In other words, this machine is the oracle Turing machine computing
the function s[] in remark 6.

Since the notion of running time of oracle Turing machines has already been
defined, we can provide a complexity notion for this model too.

Definition 17 (Complexity of a strategy). The running time of a game
machine is the same as the one of an oracle Turing machine: the cost of an
oracle call is the size of the oracle answer.

Now we say that the complexity of a game machine on Gτ is bounded
by T : τ if for all strategies s1, . . . , sn with bounded sizes, the computation
time of the game machine on the oracles representing s1, . . . , sn is bounded by
T (‖s1‖τ1 , . . . , ‖sn‖τn).

From now on, we will say that the complexity of a strategy is bounded by
T if there exists a game machine with running time T computing this strategy.

Remark 9. It is easy to see that as for the accumulated complexity, the com-
plexity of a strategy (in the sense of definition 17) bounds the size of the strategy.

Moreover, the running time of a game machine on a given input strategy
bounds the number of moves in the history.

We now prove that our two definitions of complexity are equivalent.

Proposition 9. The accumulated complexity of a strategy bounds its complexity.
Conversely, its accumulated complexity is polynomially bounded with respect to
its complexity.

19

Proof. If a strategy is computed (as a first-order function) by a Turing machine
in time T0, then the running time of the corresponding game machine defined
in the proof of proposition 8 is the sum of the sizes of the opponent moves (i.e.
oracle answers) plus the sum of the running times T0(p) for each odd prefix of
the history: this is precisely the definition of the accumulated complexity.

Conversely, if s is computed by a game machine with complexity T , then
for all strategies s1, . . . , sn such that H(s, s1, sn) = m1,m

′
1, . . . ,mt,m

′
t, the

accumulated complexity T ′ of the Turing machine build from the game machine
as described in the proof of proposition 8 verifies:

∀1 ≤ k ≤ t,T ′(|m1,m
′
1, . . .mk|) ≤ T (‖s1‖τ1 , . . . , ‖sn‖τn)

|mk| ≤ T (‖s1‖τ1 , . . . , ‖sn‖τn).

By summing these inequalities, we obtain:∑
1≤k≤t

|mk|+ T ′(|m1,m
′
1, . . .mk|) ≤ 2t · T (‖s1‖τ1 , . . . , ‖sn‖τn).

According to remark 9, the number 2t of moves in the history is itself
bounded by T (‖s1‖τ1 , . . . , ‖sn‖τn). By maximizing over all argument strategies
whose sizes are bounded by given bounds, we can conclude that the accumulated
complexity is bounded quadratically with respect to T .

The fact that the accumulated complexity bounds the complexity is not
really surprising. Indeed, it can be seen as a rough upper bound on the compu-
tation time required to simulate a confrontation: it repeats unnecessary compu-
tations over increasing prefixes of the history whereas the game machine avoids
them, by its interactive nature.

4.4. Polynomial time computable higher-order functions

Since size and complexity bounds of a strategy are functions of arbitrary
finite type, we need a class of bounding functions for these types in order to
generalize the usual classes of polynomial time computable functions for first and
second-order functions. The usual polynomials have already been extended by
Kapron and Cook [2] to define the class fptime2 of polynomial time computable
second-order functions. These polynomials have in fact also been extended to
all finite types [8] in order to characterize bff and define other higher-order
complexity classes.

Definition 18 (Higher-order polynomials). Higher-order polynomials are
terms of the simply-typed λ-calculus over base type N with constants for addi-
tion and multiplication of type N× N→ N.

This class of functions is in particular stable by substitution, λ-abstraction
and its restriction to first-order types (resp. second-order types) corresponds to
the usual first-order (resp. second-order) polynomials.

20

We can now define the polynomial time computable strategies as strategies
computed by a game machine whose running time is bounded by a higher-
order polynomial. Note that according to proposition 9, using accumulated
complexity instead would define the same class of strategies.

Definition 19. Let polyτ be the set of pcf functions of type τ represented by
a (higher-order) polynomial time computable strategy.

In order to understand and justify this definition, we will need a few results
to compare it with other existing classes. First, the polynomial pcf functions of
type N→ N and (N→ N)→ N are the usual first and second-order polynomial
time computable functions.

Proposition 10. For all first-order or second-order type τ , bffτ = polyτ .

Indeed, it is easy to see that the game machines for these two games re-
spectively behave quite like usual Turing machines and oracle Turing machines.
And since the usual notion of size for inputs of type N and N→ N coincide with
our notion of size on the corresponding strategies (see propositions1 and 2), the
notions of complexity are (polynomially) equivalent.

We will now prove a few lemmas to compare this class with the well known
higher-order complexity class bff.

Lemma 1. For any finite type τ , the complexity of the identity function of
type τ → τ is linear.

Proof. The identity function is represented by the copycat strategy, which on
each opponent move in one copy of the arena Aτ repeats this move in the other
copy of the arena Aτ . This strategy is innocent, since it depends only on the
last played move.

If τ = τ1×· · ·×τn → β and s1, . . . , sn are strategies in the corresponding sub-
games, then the size of the history of the copycat strategy against s, s1, . . . sn is
roughly twice the size of the history of s against s1, . . . , sn since every move is
repeated. For a more correct upper bound (three times is sufficient) we need to
take into account the increase in the length of each justification name (at most
one). In other words, its size is roughly bounded by λb.λb1. . . . λbn.2·(b b1 . . . bn)
which could also be written λb.2 · b. This is also a bound on its complexity since
the number of steps a game machine needs to copy an oracle answer as an oracle
query is linear in the size of this query.

Corollary 1. The complexity of the projection functions of type τ × σ → τ
and τ × σ → σ is also linear.

Indeed, they all have a strategy which are similar (if not equal to) the copycat
strategy.

Corollary 2. For any finite types σ and τ , the application function of type
(σ → τ)× σ → τ is polynomial time computable.

21

This is also a particular case of identity function. According to the proof
of lemma 1, its complexity is bounded by λ(x, y).2 · (x y). In other words,
the complexity of the application function is (roughly) the application function
itself.

This implies that the class poly is stable by composition. In particular, if
F is computable in time P1 and f in time P2 (where P1 and P2 are higher-order
polynomials), then the composition F (f, ·) is computable in time 2 · P1(P2, ·).

As it is expected of an analogue of fptime at higher types, this class ex-
tends bff.

Theorem 3. Every bff function has a polynomial strategy (in the correspond-
ing pcf-game).

Proof. The bff functions can be defined using the pvω language underlined in
section 2. Proposition 10 covers the case of fptime, and the previous corollaries
deal with the cases of application, composition, projections, and expansion.

Also, the second-order bounded recursion on notation operator can be seen
as a second-order polynomial time computable function, which is covered by
proposition 10. More precisely, we can prove that its complexity is roughly
bounded by λn0, G,Hn 7→ n ·G(H(n,B(n) + n0)) + n0 (it can be computed by
|x| iteration of F applied to x an input bounded by the size of B on x).

A bff function is then polynomial time computable in our sense, and we
can even build a bound on its complexity from a pvω term.

However, from order 3 and above poly strictly contains bff. Indeed, the
function Ψ from example 1 is computable in polynomial time.

Example 6. A polynomial time computable strategy for Ψ can be described this
way. It first simulates the confrontation (as the copycat strategy does) of its first
argument (namely, a strategy for F) on a (simulated) strategy for fx. Since fx
is computable in polynomial time with respect to |x|, say bounded by λy.P (|x|, y),
this is done in time G(λy.P (n, y)) if G and n respectively bound the sizes of the
argument strategies (for F and x). Similarly, the second evaluation is done in
time G(λy.c) where λy.c bounds the complexity of the zero function. Then the
comparison of those values takes at most the same time. It remains to show
that in the second case, the size of 2x is bounded by a higher type polynomial
in G and n. Indeed, if the strategy for F can distinguish between these two
inputs, then in means it that during these two confrontations it has evaluated
them at the only point where they differ, namely 2x. In other words, the binary
encoding of 2x appears in the corresponding histories, so |2x| is bounded by
G(λy.c) and G(λy.P (n, y)). Overall, the complexity of this strategy is bounded
by λG.λn.G(λy.P (n, y)) +G(λy.c) up to a multiplicative constant.

Overall, these results support the hypothesis that this new class naturally
extends the usual class of polynomial time computable functions and does not
suffer from the same weaknesses as bff. Some additional results are required
to show that it does not include any function which are not intuitively feasible.
However, it is not yet clear how they should be stated, given the informal nature

22

of this notion. On the opposite, finding counter-examples, if they exist, would be
simpler, and would help to better outline this notion of higher-order feasibility.

5. Conclusion and generalization to other games

In this paper, we focused only on defining complexity (and in particular
polynomial time complexity) for higher-order functions, which was our main
motivation but we now have a quite generic framework where we can define
analogue notions like non-deterministic or space complexity since we use a quite
generic machine model.

However, while doing so, we have underlined the essential elements which
are necessary to define complexity in a more general setting. In particular, it
is conceivable to extend our definitions of size and complexity for more general
games as soon as they meet the following requirements:

• an explicit binary encoding of moves and names is provided (which forbids
uncountable arenas);

• the arenas have finite depth and are acyclic, so that a notion of argument
game can be defined (in which case, the order of the type associated to
their size or complexity is still related to their depth);

• the plays verify the minimal rules (in particular: justified, well-opened,
alternating and stable by sub-play) necessary to define the confrontation.

In particular, some elements of pcf-games are not necessary to define com-
plexity, and additional rules can be allowed as soon as they are stable by sub-
game or if another notion of sub-game is defined so that this is the case. For
example, the innocence condition is only here to restrict the knowledge that the
players have on the current play, which in particular guarantees their intention-
ality, i.e. that we can indeed interpret them as functions. But we could easily
study games with strategies without this restriction, i.e. having access to the
whole play and obtain a different notion of complexity for them, although we
wouldn’t be able to interpret them as higher-order functions anymore.

In addition, it seems a good start to define a notion of complexity for non-
sequential games (i.e. where plays are not necessarily alternating), allowing for
example to define the complexity of the parallel or function, but this is a more
difficult task.

It is now necessary to provide more arguments in favor of this class and this
notion of complexity in general. In particular, it would be interesting to have
a characterization using a function algebra, similar to Cobham’s for fptime,
Mehlhorn’s for fptime2, or pvω for bff. Also, for a functional languages ap-
proach, a connection with notions like derivational complexity [23, 24, 25, 26]
could be made.

23

Acknowledgments

I would like to thank the anonymous reviewers for their very relevant remarks
which greatly helped improve the general clarity of this paper, as well as those
who supported me while writing it, amongst whom were Mathieu Hoyrup and
Martin Ziegler.

References

[1] K. Mehlhorn, Polynomial and abstract subrecursive classes, J. Comput.
Syst. Sci. 12 (2) (1976) 147–178.

[2] B. M. Kapron, S. A. Cook, A new characterization of type-2 feasibility,
SIAM Journal on Computing 25 (1) (1996) 117–132.

[3] A. Kawamura, S. Cook, Complexity theory for operators in analysis, in:
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
’10, ACM, New York, NY, USA, 2010, pp. 495–502.

[4] H. Férée, M. Hoyrup, W. Gomaa, On the query complexity of real func-
tionals, in: LICS - 28th ACM/IEEE Symposium on Logic in Computer
Science, New Orleans, États-Unis, 2013, pp. 103–112.

[5] H. Férée, W. Gomaa, M. Hoyrup, Analytical properties of resource-
bounded real functionals, Journal of Complexity 30 (5) (2014) 647–671.

[6] S. A. Cook, B. M. Kapron, Characterizations of the basic feasible function-
als of finite type, Foundations of Computer Science, IEEE Annual Sympo-
sium on 0 (1989) 154–159.

[7] A. Seth, Turing machine characterizations of feasible functionals of all finite
types, Feasible Mathematics II (1995) 407–428.

[8] R. J. Irwin, J. S. Royer, B. M. Kapron, On characterizations of the basic
feasible functionals (part ii), unpublished (2002).

[9] R. J. Irwin, J. S. Royer, B. M. Kapron, On characterizations of the basic
feasible functionals (part i), J. Funct. Program. 11 (1) (2001) 117–153.

[10] S. Bellantoni, Comments on two notions of higher type computability.,
Unpublished notes.

[11] S. C. Kleene, Countable functionals, Constructivity in Mathematics (1959)
81–100.

[12] H. Nickau, D. D. Naturwissenschaften, D. m. H. Nickau, A. V. Fachbere-
ich, D. Prof, D. F.-j. Delvos, Hereditarily sequential functionals: A game-
theoretic approach to sequentiality (1996).

24

http://dx.doi.org/10.1016/S0022-0000(76)80035-9
http://hal.inria.fr/hal-00773653
http://hal.inria.fr/hal-00773653
http://hal.inria.fr/hal-00848482
http://hal.inria.fr/hal-00848482
http://dblp.org/db/journals/jfp/jfp11.html#IrwinRK01
http://dblp.org/db/journals/jfp/jfp11.html#IrwinRK01

[13] J. M. E. Hyland, C. H. L. Ong, On full abstraction for pcf: I, ii, and iii,
Inf. Comput. 163 (2) (2000) 285–408.

[14] G. D. Plotkin, Lcf considered as a programming language, Theoretical
Computer Science 5 (3) (1977) 223–255.

[15] A. Cobham, The intrinsic computational difficulty of functions (1965) 24.

[16] S. Cook, A. Urquhart, Functional interpretations of feasibly constructive
arithmetic, Annals of Pure and Applied Logic 63 (2) (1993) 103–200.

[17] S. R. Buss, B. M. Kapron, Resource-bounded continuity and sequentiality
for type-two functionals, ACM Trans. Comput. Logic 3 (3) (2002) 402–417.

[18] J. S. Royer, On the computational complexity of longley’s h functional,
in: Second International Workshop on Implicit Computational Complexity,
UC/Santa Barbara, 2000.

[19] J. R. Longley, Notions of computability at higher types i, in: Logic Collo-
quium, Vol. 19, 2000, pp. 32–142.

[20] M. J. Gabbay, D. R. Ghica, Game semantics in the nominal model (2012)
173–189

[21] M. J. Gabbay, V. Ciancia, Freshness and name-restriction in sets of traces
with names, in: Foundations of software science and computation struc-
tures, 14th International Conference (FOSSACS 2011), Vol. 6604 of Lecture
Notes in Computer Science, Springer, 2011, pp. 365–380.

[22] H. Nickau, Lecture notes in computer science, in: A. Nerode, Y. V. Matiya-
sevich (Eds.), Logical Foundations of Computer Science, Vol. 813, Springer
Berlin Heidelberg, 1994, Ch. Hereditarily sequential functionals, pp. 253–
264.

[23] D. Sands, Complexity analysis for a lazy higher-order language, in: N. D.
Jones (Ed.), ESOP, Vol. 432 of Lecture Notes in Computer Science,
Springer, 1990, pp. 361–376.

[24] N. Danner, J. Paykin, J. S. Royer, A static cost analysis for a higher-
order language, in: M. Might, D. V. Horn, A. Abel, T. Sheard (Eds.),
PLPV, Proceedings of the 7th Workshop on Programming languages meets
program verification, PLPV 2013, Rome, Italy, January 22, 2013, ACM,
2013, pp. 25–34.

[25] N. Danner, J. S. Royer, Adventures in time and space, Logical Methods in
Computer Science 3 (1).

[26] U. Dal Lago, S. Martini, Lecture notes in computer science, in: M. van
Eekelen, O. Shkaravska (Eds.), Foundational and Practical Aspects of Re-
source Analysis, Vol. 6324, Springer Berlin Heidelberg, 2010, Ch. Deriva-
tional Complexity Is an Invariant Cost Model, pp. 100–113.

25

http://www.sciencedirect.com/science/article/pii/0304397577900445
http://www.sciencedirect.com/science/article/pii/016800729390044E
http://www.sciencedirect.com/science/article/pii/016800729390044E
http://doi.acm.org/10.1145/507382.507387
http://doi.acm.org/10.1145/507382.507387
http://dblp.org/db/journals/entcs/entcs286.html#GabbayG12
http://dx.doi.org/10.1007/3-540-58140-5_25
http://dx.doi.org/10.1007/978-3-642-15331-0_7

	Introduction
	Background
	pcf-games
	Arenas
	Plays
	Innocent strategies
	Confrontation
	Computability

	Complexity
	Size of a strategy
	Accumulated complexity
	Game machines
	Polynomial time computable higher-order functions

	Conclusion and generalization to other games

