
REGULAR-SS11:
On the Computational Complexity

of Positive Linear Functionals on C[0; 1]∗

Hugo Férée1,2 and Martin Ziegler1,3

1 Dept. of Mathematics, TU Darmstadt, Schlossgartenstr.7, D-64289 Darmstadt, Germany
2 Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France

Inria, Villers-lès-Nancy, F-54600, France
CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France

3 School of Computing, KAIST, Yuseong-gu 291 Daehak-ro, 34141 Daejeon, South Korea

Abstract. The Lebesgue integration has been related to polynomial counting complexity in
several ways, even when restricted to smooth functions. We prove analogue results for the in-
tegration operator associated with the Cantor measure as well as a more general second-order
#P-hardness criterion for such operators. We also give a simple criterion for relative polynomial
time complexity and obtain a better understanding of the complexity of integration operators
using the Lebesgue decomposition theorem.

1 Motivation and Introduction

Devising a complexity theory of higher-type computation is an ongoing endeavour since at
least 25 years [Cook91, KaCo96, IBR01, KaCo10, FGH13, FeHo13, KSZ15]. Perhaps more
modestly, we are interested in classifying the continuous linear functionals Ψ on the space
C[0; 1] of continuous functions on the real unit interval: first non-uniformly, that is, investigate
the computational complexity of the real number Ψ(f) for arbitrary but fixed polynomial-
time computable f ∈ C[0; 1]; and then uniformly with (approximations, in some sense, to) f
‘given’ by means of oracle access, yet still for fixed Ψ .

According to the Riesz–Markov–Kakutani Representation Theorem precisely every posi-
tive (i.e. monotone) linear functional Ψ : C[0; 1] → R is of the form Ψ(f) =

∫ 1
0 f(t) dν(t) for

some regular Borel measure ν on [0; 1]. Lebesgue’s Decomposition Theorem in turn asserts
each such ν to admit a (unique) decomposition ν = νd + νc + νs, where

i) νd is discrete,
ii) νc is absolutely continuous w.r.t. the canonical (i.e. Lebesgue) measure λ, and

iii) νs is singular continuous.

This theorem can be useful in the study of the computational complexity of an integration
operator, by determining the complexity of each component.

Remark 1. i) The prototype of a discrete measure is Dirac’s family δz with δz([a; b]) = 1
if z ∈ [a; b] and δz([a; b]) = 0 otherwise. The induced positive linear functional is simply
evaluation at z — and polynomial-time computable uniformly in z, essentially by defini-
tion.
More generally every discrete measure on [0; 1] has the form νd =

∑
j∈N δzj · wj for two

sequences (zj) ⊆ [0; 1] and (wj) ⊆ [0;∞) with
∑

j wj <∞.

∗Supported in part by the Marie Curie International Research Staff Exchange Scheme Fellowship 294962

within the 7th European Community Framework Programme and by the German Research Foundation (DFG)
with project Zi 1009/4-1. A SHORT version of this work was presented at CCA 2015.

2 Hugo Férée and Martin Ziegler

ii) The prototype of an absolutely continuous measure on [0; 1] is thus λ defined by λ([a; b]) =
b − a; and the complexity of its induced positive linear functional on C[0; 1], namely of
definite Riemann integration, has been characterized as #P1 (Fact 3a+b); and indefinite
Riemann integration as #P (Fact 3c+d). Moreover restricting to continuously differen-
tiable argument does not reduce the worst-case complexity.
In general, according to the classical Radon–Nikodym Theorem, to every absolutely con-
tinuous measure νc on [0; 1] there exists some measurable ϕ : [0; 1] → [0;∞) such that∫ x
0 f(t) dνc(t) =

∫ x
0 f(t)ϕ(t) dt holds for all f ∈ C[0; 1] and 0 ≤ x ≤ 1.

iii) The prototype of a singular continuous measure is Cantor’s, that is, given by the Devil’s
Staircase or Cantor–Lebesgue–Vitali function S : [0; 1] → [0; 1] as cumulative distri-
bution and inducing as functional the parametric Riemann-Stieltjes integral (f, x) 7→∫ x
0 f(t) dS(t).

1.1 Recap of Discrete, Real, and Second-Order Complexity Theory

We presume familiarity with discrete complexity theory and only briefly recall the classes

• P of decision problems L ⊆ Σ∗ to which membership “~u ∈ L?” is decidable within a
number of steps polynomial in the input length |~u|;
• EXP of decision problems decidable in time bounded by some exponential polynomial in

the input length;
• PSPACE of decision problems to which membership is decidable using an at most polyno-

mial amount of memory;
• FP of total function problems f : Σ∗ → N computable in a number of steps polynomial

in the input length with output encoded in binary;
• NP of decision problems L ⊆ Σ∗ of the following form for some V ∈ P and some integer

polynomial p: L =
{
~u
∣∣ ∃~v : |~v| ≤ p(|~u|), 〈~u,~v〉 ∈ V

}
.

• #P of counting (i.e. function) problems of the form

ψ : Σ∗ 3 ~u 7→ #
({
~v
∣∣ |~v| ≤ p(|~u|), 〈~u,~v〉 ∈ V }) ∈ N

• #P1 of unary counting problems of the form

ψ1 : N 3 n 7→ #
({
~v
∣∣ |~v| ≤ p(n), 〈1n, ~v〉 ∈ V

})
∈ N

with hierarchy P ⊆ P#P1

NP
⊆ P#P ⊆ PSPACE ⊆ EXP.

In particular recall that #P may not be closed even under simple functions [HeOg02, §5.2].
Here Σ denotes some fixed finite alphabet containing at least symbols 0 and 1; and

Σ∗ ×Σ∗ 3 (~v, ~w) 7→ 〈~v, ~w〉 ∈ Σ∗

an injective polynomial-time computable string pairing function having polynomial-time de-
cidable image and polynomial-time computable partial inverse.

Concerning the complexity of real functions we refer to [Ko91, Corollary 2.21]: Com-
puting f : [0; 1] → [0; 1] within time t(n) means (or rather is equivalent) to compute in the
discrete sense of complexity t(n) some function f̃ : {0, 1}∗ → {0, 1}∗ such that it holds for
µ(n) := t(n+ 1) + 1, for all n ∈ N, and for all ~u ∈ {0, 1}n:

∀x ∈ [0; 1] :
∣∣x− bin(~u)/2µ(n)

∣∣ ≤ 2−µ(n) ⇒
∣∣f(x)− bin

(
f̃(~u)

)
/2n
∣∣ ≤ 2−n . (1)

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 3

Here, for ~v ∈ {0, 1}n, bin(~v)/2|~v| :=
∑n−1

j=0 vj2
j−n ∈ [0; 1) is a dyadic rational. Again {0, 1}

can be replaced by any other at least binary alphabets without affecting the complexity more
than polynomially. In the sequel for the Cantor distribution ternary rational approximations
tri(~u)/3|~u| =

∑m−1
j=0 uj3

j−m for ~u ∈ {0, 1, 2}m will often turn out as convenient.

Recall that µ : N → N satisfying d(x, x′) ≤ 2−µ(n) ⇒ e
(
f(x), f(x′)

)
≤ 2−n is called a

modulus of continuity of f : X → Y with metric spaces (X, d) and (Y, e). Concerning a uniform
complexity of operators in analysis, we follow [KaCo10, §3] in letting Pred := {0, 1}({0,1}∗)
denote the set of all predicates on finite binary strings; Reg ⊆ {0, 1}∗∗ := ({0, 1}∗)({0,1}∗)
the family of all (total) mapping ϕ : {0, 1}∗ → {0, 1}∗ that are length-monotonous in the
sense of satisfying |ϕ(~u)| ≤ |ϕ(~v)| whenever |~u| ≤ |~v|. In this case, the size function |ϕ| : N 3
|~v| 7→ |ϕ(~v)| ∈ N of ϕ is well-defined. A second-order polynomial P is a term over +,×,N
and first-order variable n as well as second-order variable `. An oracle Turing machine M?

computes a partial function F :⊆ Reg→ Reg when producing F
(
ϕ
)
(~v), given ~v ∈ {0, 1}∗ and

oracle access to ϕ ∈ dom(F). M? runs in second-order polynomial time if it makes a number
steps bounded by P (|ϕ|, |~v|) for some second-order polynomial P . The following notions and
bold-face complexity classes are from [Kawa11, Definitions 2.10–2.13]:

Definition 2. a) P is the class of total F : Reg→ Pred computable in second-order polyno-
mial time.

b) FP is the class of total F : Reg→ Reg computable in second-order polynomial time.
c) NP is the class of total G : Reg→ Pred of the form

G
(
ϕ
)
(~v) = 1 ⇔ ∃~w ∈ {0, 1}P (|ϕ|,|~v|) : F

(
ϕ
)
(~v, ~w) = 1

for some F ∈ P and some second-order polynomial P .
d) #P is the class of total G : Reg→ Reg of the form

G
(
ϕ
)
(~v) = bin

(
#
{
~w ∈ {0, 1}P (|ϕ|,|~v|) : F

(
ϕ
)
(~v, ~w) = 1

})
for some F ∈ P and some second-order polynomial P .

e) For F,G :⊆ Reg → Reg, a second-order polynomial-time (Weihrauch-) reduction from
F to G is a triple (U, V,W) with U, V,W ∈ FP such that U(ϕ) ∈ dom(G) for every
ϕ ∈ dom(F) and

∀~v ∈ {0, 1}∗ : F
(
ϕ
)
(~v) = W

(
ϕ
)〈
G
(
U
(
ϕ
))((

V (ϕ)
)
(~v)
)
, ~v
〉

f) Some ϕ ∈ Reg encodes f ∈ C([0; 1], [0; 1]) if it is of the form

ϕ : {0, 1}∗ 3 ~u 7→ 1µ(n) 0 bin
(
f̃(~u)

)
for some modulus of continuity µ of f and f̃ according to Equation (1).

g) F :⊆ Reg→ Reg represents some operator Λ :⊆ C([0; 1], [0; 1])→ C([0; 1], [0; 1]) if it maps
every encoding ϕ ∈ Reg of some f ∈ dom(Λ) to some encoding F (ϕ) of Λ(f).

h) We may identify such an operator with the functional

Λ :⊆ C([0; 1], [0; 1])× [0; 1] 3 (f, x) 7→ Λ
(
f
)
(x) ∈ [0; 1] .

j) Λ :⊆ C([0; 1], [0; 1]) → C([0; 1], [0; 1]) is computable in second-order polynomial-time if it
admits a representative F :⊆ Reg→ Reg computable in second-order polynomial-time.

4 Hugo Férée and Martin Ziegler

Compare [BrGh11, HiPa13] for a computable version of Item e). We record that closure under
composition of second-order polynomial-time computability yields transitivity of second-order
polynomial-time reducibility. As opposed to the first-order complexity classes with the P/NP
Millennium Prize and related open problems, the second-order versions are generally known
distinct.

Fact 3 a) If f : [0; 1]→ [0; 1] is polynomial-time computable and #P1 ⊆ FP1, then
∫ 1
0 f(t) dt

is again polynomial-time computable.
b) There exists a polynomial-time computable smooth (i.e C∞) f : [0; 1] → [0; 1] such that

polynomial-time computability of
∫ 1
0 f(t) dt implies #P1 ⊆ FP1.

c) If f : [0; 1] → [0; 1] is polynomial-time computable and #P ⊆ FP, then [0; 1] 3 x 7→∫ x
0 f(t) dt is again polynomial-time computable.

d) There exists a polynomial-time computable smooth f : [0; 1]→ [0; 1] such that polynomial-
time computability of [0; 1] 3 x 7→

∫ x
0 f(t) dt implies #P ⊆ FP.

e) For any G :⊆ Reg→ Reg representing (in the sense of Definition 2g) indefinite integration∫
: C([0; 1], [0; 1]) 3 f 7→

(
[0; 1]2 3 (x, y) 7→

∫ y

x
f(t) dt

)
∈ C1([0; 1]; [0; 1]) (2)

there exists a F ∈ #P and a second-order polynomial-time reduction from G to F .
f) For every F ∈ #P and every G :⊆ Reg→ Reg representing the restriction

∫ ∣∣
C∞([0;1],[0;1])

there exists a second-order polynomial-time reduction from F to G.

For the first four items see [Ko91, Theorems 5.32+5.33]. They are non-uniform in that
f is considered fixed and not as input. In other words, they only consider the image of a
complexity class by the operator. This contrasts with the uniform Items e) and f), essentially
[Kawa11, Theorem 4.21], where the complexity of the operator itself is considered.

1.2 Overview, Techniques, and Related Work

The present work investigates the non-uniform and uniform computational complexity of
other (types of) positive linear functionals on C[0; 1] and C∞[0; 1]. Similarly to Fact 3, Sec-
tions 2 and 3) relate Cantor integration non-uniformly and uniformly equivalent to #P1, #P,
and #P. Perhaps surprisingly, it is thus as hard as ordinary/absolutely continuous Riemann
integration. (Along the way we prove the Devil’s Staircase S to be computable in polynomial
time.)

On the other hand, Example 16 constructs singular continuous measures that does render
integration polynomial-time computable — after Subsection 4.1 identifying classes of measures
for which integration is #P–hard. Conversely, Example 14 constructs a discrete measure
rendering integration #P–hard — based on Subsection 4.2 devising classes of measures for
which integration is polynomial-time computable.

Proof techniques are essentially refinements and variations of those employed in [Ko91,
§5.4] and [Kawa11]: On the one hand encoding a polynomial-time decidable verifier V ⊆
{0, 1}∗ × {0, 1}∗ as polynomial-time computable (smooth) real function fV consisting of in-
finitely many ‘steps’ (cmp. Figures 1 and 2) such that the hard discrete counting problem
#{~y : (~x, ~y) ∈ V } can be recovered from approximations of the continuous integral over
fV w.r.t. the measure under consideration; and on the other hand expressing approxima-
tions to said integral as discrete counting problem with polynomial-time decidable verifier;

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 5

and uniformly analyzing the ‘reduction’ V 7→ fV as well as its converse in terms of second-
order polynomial-time complexity theory. In fact jointly scaling the steps in x-direction and
y-direction is a delicate trade-off: such as to (i) recover discrete arguments ~x ∈ {0, 1}∗
from approximations to real arguments x ∈ [0; 1] as well as (ii) recover discrete results
#{~y : (~x, ~y) ∈ V } from approximations to the real values

∫
fV (t) dS(t) while (iii) maintaining

continuity, smoothness, and polynomial-time computability of fV ; cmp. Remark 18b).
Regarding more general but qualitative computability investigations of measures the

reader may refer for instance to [Schr07, HRW12, MTY14, Coll14].

2 Smooth Cantor Integration is at Least as Hard as Continuous Riemann

Proposition 4. a) Cantor’s Function S : [0; 1]→ [0; 1] is Hölder-continuous with exponent
α = ln(2)/ ln(3) and computable within polynomial time.

b) For every interval I = [a; b] ⊆ R and every non-decreasing continuous g : I → R it holds∫ g(b)
g(a) f(t) dt =

∫
I f
(
g(s)

)
dg(s).

Proof. a) Recall that S is the uniform limit of a sequence of piecewise linear functions defined

inductively by S0 := id : [0; 1]→ [0; 1] and Sn+1(t) :=

Sn(3t)/2 if t ≤ 1

3

1/2 if 1
3 ≤ t ≤ 2

3

Sn(3t− 2)/2 + 1/2 if 2
3 ≤ t

More precisely ‖Sn+1 − Sn‖∞ ≤ ‖Sn − Sn−1‖∞/2, hence ‖Sn − S‖∞ ≤ 2−n. Note that
Sn has

∑n
j=1 2j = 2n+1 − 2 breakpoints at certain triadic rational points t ∈ Tn := Z/3n.

Moreover the restriction Sn
∣∣
Tn
→ Dn := Z/2n is well-defined and uniformly computable

in time polynomial in n. According to (a minor adaptation of) [Ko91, Theorem 2.22], S
is therefore computable in polynomial time.

b) Consider the generalized Darboux sums

U
(
(sj), f ◦ g, g

)
=
∑

j
sups∈[sj ,sj+1] f

(
g(s)

)
·
(
g(sj+1)− g(sj)

)
,

L
(
(sj), f ◦ g, g

)
=
∑

j
infs∈[sj ,sj+1] f

(
g(s)

)
·
(
g(sj+1)− g(sj)

)
by hypothesis both converging (from above and below, respectively) to

∫
I f
(
g(s)

)
dg(s),

where (sj) denotes a partition of I. Substituting tj := g(sj) thus yields a partition of
g(I) with classical Darboux sums U

(
(tj), f, id

)
= U

(
(sj), f ◦ g, g

)
and L

(
(tj), f, id

)
=

L
(
(sj), f ◦ g, g

)
converging to

∫
g(I) f(t) dt; and vice versa. ut

It follows that C[0; 1] 3 f 7→ f ◦S ∈ C[0; 1] and C1[0; 1] 3 f 7→ f ◦S ∈ C0,α[0; 1] are well-defined
reductions from Riemann to Cantor integration computable within second-order polynomial
time. Applied to Friedman and Ko’s polynomial-time computable f ∈ C∞([0; 1], [0; 1]) with
#P1–‘complete’ integral, one obtains a polynomial-time computable Hölder-continuous h :
[0; 1]→ [0; 1] such that

∫ 1
0 h(t) dS(t) is not computable in polynomial time unless #P1 ⊆ FP.

Note that f ◦S is not differentiable in general. Moreover the reduction seems restricted to
definite integration (and thus only achieves #P1–hardness rather than #P) since the Cantor
integration bounds a and b cannot computably be recovered from the Riemann ones S(a) and
S(b) even in the multivalued sense.

Cantor integration is as hard as Riemann integration in the non-uniform and the uniform
senses.

6 Hugo Férée and Martin Ziegler

Theorem 5. a) There exists a polynomial-time computable smooth (i.e. infinitely often dif-
ferentiable) h : [0; 1]→ [0; 1] such that

∫ 1
0 h(t) dS(t) is not computable in polynomial time

unless #P1 ⊆ FP.
b) There exists a polynomial-time computable smooth h : [0; 1] → [0; 1] such that [0; 1]2 3

(a, b) 7→
∫ max{a,b}
min{a,b} h(t) dS(t) is not computable in polynomial time unless #P ⊆ FP.

c) For every F ∈ #P and every G :⊆ Reg→ Reg representing the definite Cantor integration
operator on smooth arguments, that is, the mapping

C∞([0; 1], [0; 1]) 3 f 7→
(
[0; 1]2 3 (a, b) 7→

max{a,b}∫
min{a,b}

f(t) dS(t) ∈ [0; 1]
)
∈ C0,α([0; 1]2, [0; 1])

there exists a second-order polynomial-time reduction from F to G.

Proof. These proofs are inspired from the proof of the hardness of the Riemann integration
in [Kawa11].

a) Let g be a #P1 function. By definition, there exists a polynomial time computable function
g1 and a polynomial P such that ∀n ∈ N, g(1n) = #{~v ∈ {0, 1}P (n) : g1(1

n, ~v) = 1}.
Recall that the Cantor set is the intersection over n ∈ N of unions of 2n disjoint intervals of
length 3−n and that the Cantor integral of a constant function over one of these intervals
(which we will call Cantor intervals in the following) is equal to this constant multiplied
by the size of the interval.
We will define a smooth function h such that the values of g1 will be encoded as the
(constant) value of h on one of these intervals.
First, assume we have a smooth polynomial time computable function step as described
by figure 1. We will define the function h such that its values on the Cantor interval

1

1
5

4
5

Fig. 1. The ”smooth step function” step.

In = [3−n − 3−(n+1); 3−n] will encode the values of g1(n,~v) for |~v| = P (n).
More precisely, we divide this interval into 2P (n) smaller Cantor-intervals [ln,~v; rn,~v] of
width 3−(P (n)+n+1): {

rn,~v = 3−n − 3−(n+1)
∑P (n)−1

i=0 2 · vi3i−P (n)

ln,~v = rn,~v − 3−(P (n)+n+1)
,

where vi is the ith bit of ~v.
Note that these intervals are pairwise disjoint (for all n and ~v), and we even have that the
open intervals (ln,~v − 3−(P (n)+n+2); rn,~v + 3−(P (n)+n+2)) are also pairewise disjoint.
Now, if g1(1

n, ~v) = 1, we define h on [ln,~v − 3−(P (n)+n+2); rn,~v + 3−(P (n)+n+2)] as the the
step function horizontally scaled to this interval and vertically scaled by 3−(P (n)·n+n+1).

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 7

10

3−(P (n)+2n+1)

In

3−n3−n − 3−(n+1)

[ln,~v; rn,~v]

. . .

Fig. 2. The upper part of the figure show the envelope of h based on the intervals In. The lower part is a more
precise envelope based on the subdivision of In into P (n) intervals.

The function h is equal to 0 everywhere else. Figure 2 illustrates the pattern behind this
construction.

Note that due to the smoothness of step, and since the intervals do not overlap, h is also
smooth on (0; 1]. Also, since the step function is scaled vertically faster (by a factor 3n)
than horizontally when going to 0, h is also smooth on [0; 1]. Now, this function is constant
on every interval [ln,~v; rn,~v] and its value depends on the value of g1(1

n, ~v). More precisely,
the Cantor integral of h over such an interval is equal to 3−(P (n)·(n+1)+2n+2) · g1(1n, ~v).
Since the Cantor integral is equal to 0 outside such intervals, the integral

∫
In
h(t) dS(t) is

equal to the sum over ~v (|~v| = P (n)) of such integrals, that is g(1n) · 3−(P (n)·(n+1)+2n+2)

by definition of g1.

This function is also polynomial time computable, since given x ∈ [0; 1] and a precision
p, and x < 3−p then we can output 0. Otherwise, we can determine in polynomial time
if x is close (up to 3−(P (n)+n+2)) to an interval [ln,~v; rn,~v], in which we have to compute
g1(1

n, ~v) and the value of the corresponding step function in polynomial time if it is equal
to 1.

The Cantor integral
∫ 1
0 h(t) dS(t) is equal to

∑
n∈N g(1n)3−(P (n)·(n+1)+2n+2), so if we as-

sume (without loss of generality) that P (n) = Ω(n2), then its ternary expansion is equal to
the concatenation of the ternary encoding of g(1n) for n ∈ N (with padding zeroes). More
precisely, the P (n) least significant digits of a tryadic number approaching this integral
with precision 3−(P (n)·(n+1)+3n+2) is equal to g1(1

n). So if this integral is a polynomial time
computable real number, then g is a polynomial time computable first-order function, and
thus #P1 ⊆ FP.

b) Assume we already proved c) and let g a #P problem. In particular it is in #P and
c) implies that (using the definition of the second-order Weihrauch-reduction) there are
U, V1, V2,W ∈ FP (with no first-order parameter ϕ since g is a first-order function) such

that: ∀~u ∈ {0; 1}∗, g(~u) = W

(
V2(~u)∫
V1(~u)

U(t) dS(t), ~u

)
.

The function U is then polynomial time computable, and smooth according to the proof
of c). If (a, b) 7→

∫ b
a U(t) dS(t) is polynomial time computable, then so would g, which

implies #P ⊆ FP.

8 Hugo Férée and Martin Ziegler

c) Let F ∈ #P be the second-order counting function associated with the polynomial func-
tion F0 and the second-order polynomial P . We first describe a polynomial time com-
putable function U which computes a smooth function from an input ϕ for F0. The con-
struction of U(ϕ) will be similar to the one of h in the proof of a). More precisely given
φ, we divide the interval In into 2n Cantor intervals I~v = [ln,~v; rn,~v], with ~v ∈ {0, 1}n.
Each of these intervals is then divided in the same way into 2P (|ϕ|,n) Cantor intervals I~v,~w,
with ~w ∈ {0, 1}P (|ϕ|,n). Similarly as in a), U(ϕ) is defined on such an interval (and on
a small neighborhood) as either 0 or the smooth step function scaled by 3−(P (n)+2n+1)

horizontally, and 3−(P (n)·n+2n+1) vertically, depending on the value of F0(ϕ,~v, ~w).
This function is smooth, and (second-order) polynomial time computable from ϕ. In ad-
dition, its Cantor integral over the interval I~v is equal to 3P (|~v|)·(|~v|+1)+4|~v|+2 · F (ϕ,~v).
Then, we define V1(~v) and V2(~v) as the endpoints of I~v, which are indeed polynomial
time computable with respect to |~v|. Finally, given ϕ and ~v, the function W (x,~v) com-
putes a 3−(P (|~v|)·(|~v|+1)+4|~v|+3)-approximation of x, multiplies it by 3P (|~v|)·(|~v|+1)+4|~v|+2, and
outputs the closest integer value. Altogether, we obtain that for all ϕ and ~v, F (ϕ,~v) =

W (
∫ V2(~v)
V1(~v)

U(ϕ)(t) dS(t), ~v), which describes a second-order polynomial reduction from F
to the definite Cantor integration. ut

3 Continuous Cantor Integration is at Most as Hard as Smooth Riemann

Reducing the problem of approximating
∫ s
0 f(t) dS(t) up to error 2−n to that of approximating∫ s

0 gn(t) dt for some smooth gn is easy: Since the Cantor measure concentrates all weight to
2n subintervals In,k of [0; 1] while neglecting the complementing ones, define fn to be zero on
the latter and otherwise equal to f cut and ‘squeezed’ into the In,k. This fn is only piecewise
continuous but can be approximated up to L1–error 2−n by a smooth one — depending on
n. Based on the following result, Corollary 17 will yield some g independent of n — at the
expense of certain ‘post-processing’ the integral’s value.

Theorem 6. a) Let f : [0; 1]→ [0; 1] be computable in polynomial time and suppose #P1 ⊆
FP. Then the definite Cantor integral over f , that is the real number

∫ 1
0 f(t) dS(t), is again

computable in polynomial time.
b) Let f : [0; 1]→ [0; 1] be computable in polynomial time and suppose #P ⊆ FP. Then the in-

definite Cantor integral over f , that is the mapping [0; 1]2 3 (x, y) 7→
∫ max{x,y}
min{x,y} f(t) dS(t),

is again computable in polynomial time.
c) For every G :⊆ Reg→ Reg representing the mapping

C([0; 1], [0; 1]) 3 f 7→
(
[0; 1]2 3 (x, y) 7→

max{x,y}∫
min{x,y}

f(t) dS(t) ∈ [0; 1]
)
∈ C0,α([0; 1]2, [0; 1])

there exists a second-order polynomial-time reduction from G to some F ∈ #P.

In-/definite Cantor integration is thus at most as hard as Riemann integration (and, equiva-
lently, #P).

Proof. a) Let µ : N → N be a polynomial modulus of continuity of f and, modifying Equa-
tion (1) as indicated, f̃ : {0, 1, 2}∗ → {0, 1}∗ computable in polynomial time such that

x ∈ [0; 1] ∧
∣∣x− tri(~u)/3µ(n)

∣∣ ≤ 3−µ(n) ⇒
∣∣f(x)− bin(~v)/2n

∣∣ ≤ 2−n .

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 9

Then the following function ψ1 : {1}∗ → N belongs to #P1:

ψ1(1
n) := #

{
(~w,~v) ∈ {0, 2}µ(n) × {0, 1}n : bin

(
f̃(~w)

)
≥ bin(~v)

}
Now the Cantor distribution assigns weight 1/2m to each interval

[tri(~w)
3m ; tri(~w)+1

3m

]
, ~w ∈

{0, 2}m. Moreover f varies by at most 2−n on each such interval for m := µ(n). Therefore
ψ1(1

n)/2n+µ(n) is a Darboux sum approximating
∫ 1
0 f(t) dS(t) up to error 21−n.

b) Similarly to a), but now take into account triadic approximations tri(~a)/3µ(n) to min{x, y}
and tri(~b)/3µ(n) to max{x, y} in the #P–function ψ(1n,~a,~b) :=

#
{

(~w,~v) ∈ {0, 2}µ(n) × {0, 1}n : tri(~a) ≤ tri(~w) ≤ tri(~b), bin
(
f̃(~w)

)
≥ bin(~v)

}
c) Consider H : Reg→ Reg, defined by H

(
ϕ
)
(〈1n,~a,~b〉, 〈~w,~v〉) := 1 if

~v ∈ {0, 1}n, ~a,~b ∈ {0, 1, 2}µ(n), ~w ∈ {0, 2}µ(n), tri(~a) ≤ tri(~w) ≤ tri(~b), bin
(
f̃(~w)

)
≥ bin(~v)

for 1µ(n) 0 bin
(
f̃(~w)

)
:= ϕ(~w), and H

(
ϕ
)
(〈1n,~a,~b〉, 〈~w,~v〉) := 0 otherwise. Then obviously

H ∈ P holds, and hence F ∈ #P for

F
(
ϕ
)
(〈1n,~a,~b〉) = bin

(
#
{

(~w,~v) ∈ {0, 2}µ(n) × {0, 1}n : tri(~a) ≤ tri(~w) ≤ tri(~b),

bin
(
f̃(~w)

)
≥ bin(~v), 1µ(n) 0 bin

(
f̃(~w)

)
:= ϕ(~w)

})
satisfying

∣∣∣F (ϕ)(〈1n,~a,~b〉)/2n+µ(n) − ∫ tri(~b)/3|
~b|

tri(~a)/3|~a|
f(t) dS(t)

∣∣∣ ≤ 2−n according to b). ut

4 Generalized hardness and tractability conditions

4.1 Hardness

The analysis of the similarities between the proofs of uniform #P-hardness of Lebesgue and
Cantor integrations gives a list of simple criteria, which can be applied to more cases.

Theorem 7. Let µ be a measure over [0; 1] such that there for every second-order polynomial

P , there are rational nonempty open intervals Ifw and Ifw,w′ computable in uniform second-
order polynomial time, where f ∈ N→ N, w,w′ ∈ Σ∗, and |w′| ≤ P (|w|), such that:

a) w1 6= w2 =⇒ Ifw1 ∩ Ifw2 = ∅
b) w′1 6= w′2 =⇒ If

w,w′1
∩ If

w,w′2
= ∅

c) Ifw,w′ ⊆ I
f
w

d) The function

(N→ N)× D 3 f, d 7→
{
〈w,w′〉 if d ∈ Ifw,w′
ε otherwise

is second-order polynomial time computable.
e) There exists mf

w polynomial time computable with respect to |f | and |w| such that

1 ≤ mf
w ·
∫
If
w,w′

s
If
w,w′

dµ ≤ 1 + 2−P (f,|w|)

where s ∈ C[0; 1] is any polynomial time computable function such that s(0) = s(1) = 0.

10 Hugo Férée and Martin Ziegler

Then for every #P function F , there exists a second-order polynomial time reduction from F
to some G :⊆ Reg → Reg representing the definite µ integration. In addition, if s is smooth
and vanishes at 0 and 1, then this can be restricted to integration of smooth functions.

Proof. Let F ∈ #P and F0 be the second-order counting function associated with the second-
order polynomial P0. Given an input oracle ϕ, we define a continuous function U(ϕ) this way:

U(ϕ)(x) =

|I
f
w,w′ ||w|sIf

w,w′
(x) if x ∈ Ifw,w′ and F0(ϕ,w,w

′) = 1

0 otherwise.

where s(a;b)(x) =
s(x−a

b−a
)

b−a and f = P0(|ϕ|) + 1.

First, U is well-defined, since the intervals Ifw,w′ are pairewise disjoint. It also has a poly-
nomial time computable rational approximation function: given a rational q and a precision n,
decide in polynomial time (using d) in which interval q is (and output 0 if it is in none). Then,

|Ifw,w′ ||w|sIf
w,w′

(x) can be computed in polynomial time, since s and the endpoints of Ifw,w′ are.

It is also easy to see that the modulus of continuity of the function x 7→ |Ifw,w′ ||w|sIf
w,w′

(x)

is the same as the one of s, and thus U(ϕ) has a polynomial modulus of continuity (even
independent from ϕ). Altogether, this proves that U is polynomial time computable.

Secondly, if s is smooth, then so is U(ϕ). Indeed, the kth derivative of U(ϕ) at x ∈ Ifw,w′
is equal to |Ifw,w′ ||w|−(k+1) · s(k)(x−ab−a) where Ifw,w′ = (a; b). Now, if (xn) converges to x ∈ [0; 1],
then either

– xn is infinitely many times in a given interval Ifw,w′ . Since it is open, it is eventually in

this interval, in wich case U(ϕ)(k)(xn) converges to U(ϕ)(k)(xn) by continuity of U(ϕ)(k)

on Ifw,w′ (by smoothness of s);
– otherwise xn can not be infinitely many times in more that two such intervals since they

do not intersect. In this case, x is one of the endpoints of such intervals and U(ϕ)(xn)
converges to 0 = U(ϕ)(x) (since s(0) = s(1) = 0);

– otherwise, xn is eventually outside the union of the intervals (i.e. in a closed set, so where
x also belongs) and U(ϕ)(xn) = 0 = U(ϕ)(x);

– finally, xn can be decomposed into a sequence outside any interval (whose image by U(ϕ)(k)

converges to 0), or in an interval Ifwn,w′n
occurring only finitely many times. This implies

that the sequence wn diverges to +∞ (since there are only a finite number of w′ for a given
w) and thus U(ϕ)(k) also converges to 0 on this subsequence (since s(k) is bounded, and

|Ifw,w′ ||w|−(k+1) converges to 0). This is indeed equal to U(ϕ)(k)(x), otherwise we would be
in the first case.

Finally, F (ϕ,w) can be indeed computed in polynomial time from the µ-integral of U .
Indeed, according to hypothesis e,

F (ϕ,w) =
∑

|w′|≤P0(|ϕ|,|w|)

1 ≤
∑

|w′|≤P0(|ϕ|,|w|)

m|ϕ|w ·
∫
I
P0(|ϕ|,|w|)
w,w′

s
I
P0(|ϕ|,|w|)
w,w′

dµ ≤ F (ϕ,w)·(1+2−(P0(|ϕ|,|w|)+1)),

and since F (ϕ,w) ≤ 2P0(|ϕ|,|w|), and that the sum of the integrals is equal to the integral over

Ifw, we obtain:

F (ϕ,w) ≤ m|ϕ|w ·
∫
I
P0(|ϕ|,|w|)
w

U(ϕ)dµ ≤ F (ϕ,w) +
1

2
.

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 11

In other words we can define a second-order polynomial time computable functionW (ϕ, g, w)

which computes a 1
2 -approximation of m

|ϕ|
w multiplied by the real number represented by g

and outputs the closest integer. In this case, we obtain:

F (ϕ,w) = W (ϕ)(G(U(ϕ))(IP0(|ϕ|,|w|)
w), w),

if G represents the definite µ-integration. ut

4.2 Tractability

Conversely, there is some simple sufficient condition for a positive linear operator to be poly-
nomial time computable with respect to an oracle. For this, we will use the main result
of [FGH13], where the authors define the sets of relevant points (Rn)n∈N of a real norm on
C[0; 1]. Roughly speaking, Rn is the set of points of [0; 1] where it is sufficient to know an input
1-Lipschitz function f ∈ C[0; 1] in order to determine its norm with precision 2−n (see the
original article for a precise definition). The theorem states that polynomial time (relatively
to an oracle) computable real norms are exactly those which depend on a ’small’ set of points
in this sense:

Definition 8. A set A can be polynomially covered, if there exists a polynomial P such that
for all n ∈ N, A can be covered by P (n) balls of radius 2−n. In other words, A has metric
entropy log ◦P .

Fact 9 ([FGH13]) A real norm can be computed in polynomial time relatively to an oracle
if and only if its sets of relevant points (Rn)n∈N can be polynomially covered uniformly in n.

Even if an integration operator is not a norm, it can be completed into one, so that we can
apply a weak form of the previous theorem.

Theorem 10. If the support of a measure ν can be polynomially covered, then the corre-
sponding indefinite integration operator (x, y, g) 7→

∫ y
x gdν is computable in polynomial time

with respect to an oracle.

Proof. Let ν be such a measure, with support S. There exists a polynomial time computable
norm F over C[0; 1]. For x ≤ y in [0; 1], the operators G+

x,y(f) = F (f)+
∫ y
x f

+dν and G−x,y(f) =
F (f) +

∫ y
x f
−dν (where f+ and f− are the positive and negative parts of f) are norms. We

need to separate the positive and negative parts in order to make these operators always
positive.

The set of relevant points Rn of ν-integration is included in the closure of S. Indeed, the
integral of any 1-Lipschitz function defined on a neighborhood of x 6∈ S̄ is equal to zero as
soon as this neighborhood does not intersect S, by definition of the support of a measure.

Thus, for all n, the set of relevant points of G+
x,y and G−x,y are included in S̄ ∪RFn , where

(RFn)n are the relevant sets of F . By application of Fact 9 to F , (RFn)n can be polynomially
covered uniformly in n, and since it is also the case for S, and thus for its closure, it is true
for the union.

By application of the other implication of Fact 9, these norms are polynomial time com-
putable with respect to an oracle. In fact, this is also true for the corresponding operators
G+ and G−, uniformly in x and y. Since the indefinite ν-integration operator is equal to
G+ −G−, it is also polynomial time computable with respect to an oracle, and allows us to
conclude. ut

12 Hugo Férée and Martin Ziegler

Even though allowing an arbitrary oracle may seem powerful, such operators are still weaker
than Lebesgue or Cantor integrals.

Corollary 11. The indefinite integration operator associated with such a measure is not #P-
hard.

Indeed, such an operator would allow to compute Lebesgue or Cantor integration operator
in relative polynomial time, which is impossible (in particular by an application of Fact 9);
cmp. also [KaPa14].

4.3 Applications and examples

First, let us focus on the absolutely continuous case, i.e. where the integral of a function f is
equal to the Lebesgue integral of f · g, where g is a measurable function.

The simplest non-trivial example is the Lebesgue integration (with g = 1) is already #P-
hard, which makes us believe that this is the case in general. It is already the case if g is
polynomial time computable.

Proposition 12. Let g ∈ C[0; 1] be polynomial time computable and non-identically zero.
Then (x, y, f) 7→

∫ y
x f(t) · g(t)dt is #P-hard.

Proof. Let g be such a function. Since g is computable, it is continuous and thus there exists
k ∈ N such that 2−k < g on an interval [a; b], a < b (if not, it is the case for −g). Also,
we can find an appropriate step function such that its integral α on [0; 1] is polynomial time
computable, and 2−l ≤ α for some l ∈ N. Since g is polynomial time computable, it has a
polynomial modulus of continuity mg.

Let P be a second-order polynomial, and f a first-order function. It is possible to define
Iw as a sub-interval of [a; b] of width at most 2−mg(P (f,|w|)+k+2) and define the intervals Iw,w′

as uniform subdivisions of this interval.
Since g is computable in polynomial time (with respect to f and |w|), it is possible to

compute lower and upper bound c and d of g on Ifw, such that d − c ≤ 2−(P (f,|w|)+k+2) by
definition of the modulus of continuity. Thus we have that d

c ≤ 1 + (d−c)
a ≤ 2−(P (f,|w|)+2).

Similarly, we can compute in polynomial time lower and upper bounds c′ and d′ of α with
precision 2−(P (f,|w|)+l+2), and thus, d′

c′ ≤ 2−(P (f,|w|)+2).
Finally, we have that

c · c′
|Ifw,w′ |2

≤
∫
If
w,w′

s
If
w,w′
· gdλ ≤ d · d′

|Ifw,w′ |2
,

that is to say 1 ≤
|Ifw,w′ |2
c · c′ ·

∫
If
w,w′

s
If
w,w′
≤ (1 + 2−(P (f,|w|)+2))2 ≤ 1 + 2−P (f,|w|). ut

However, we don’t know if this still holds for functions g with higher complexity. Intuitively, it
seems that we need g to be polynomial time computable in order to retrieve some information
about f from its integral (see hypothesis e of Theorem 7).

Now we can have a look at the case of discrete measures, i.e. corresponding to posive
linear operators F of the form: F (f) =

∑
n∈N αn · f(βn), where αn > 0 and βn ∈ [0; 1]. It

is not surprising that when this sum is finite, then the integration operator F is polynomial
time computable with respect to an oracle (where an appropriate oracle encodes the αi’s and
βi’s). But Theorem 10 even gives a more general result.

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 13

Proposition 13. If F is a discrete integration operator of the form F (f) =
∑

n∈N αn ·f(βn),
such that the set B = {βi | i ∈ N} can be polynomially covered, then F is computable in
relative polynomial time.

Proof. In this case, the support of F is contained in the closure of B, which is thus can also
be polynomially covered, and Theorem 10 applies. ut

Conversely, there are discrete measures defining #P-hard integration operators.

Example 14. Let F (f) =
∑

w∈{0,1}∗ 2−2|w|f(0.w.1
2
), where w̄2 is the real number with bi-

nary expansion w. Its sequence of scaling factors decreases exponentially slowly, whereas its
set of evaluation points covers all the dyadic rational numbers of the open interval (0, 1). This
discrete positive linear operator is not computable in (relative) polynomial time. Moreover,
we can apply Theorem 7 and deduce that it is #P-hard.

The conditions of the two theorems are not always necessary and there are cases where
none of them apply. But it seems that most of the time, a result can still be obtained using
the general shape of discrete measures.

Example 15. Let F (f) =
∑

n f(dn), where (dn) is the standard enumeration of the dyadic
rational numbers of [0; 1]. It is an integration operator relative to a discrete measure whose
support is [0; 1]. Since an interval can’t be polynomially covered, we can not apply Theo-
rem 10. However, a direct application of [FGH13] or straightforward analysis allows us to
prove that it is polynomial time computable. Indeed, to compute F (f), it is sufficient to
compute f(d0), . . . , f(dµ(n)), if f has modulus of continuity µ.

Finally, the last case is the one of singular continuous measures. It is the hardest one,
since there is no simple characterization of such measures.

We have already seen with the Cantor measure that an integration operator for such a
measure can be #P-hard. But a similar measure can also be polynomial time computable.

Example 16. The Cantor set is defined by the intersection of sets (Cn)n∈N, where Cn is
the union of 2n disjoint intervals of size 3−n. If we define a Cantor-like set C ′ =

⋂
n∈NC

′
n,

where C ′n is the intersection of 2−n intervals of size 32
−n

(i.e. exponentially smaller), then the
corresponding measure has support C ′, which can be polynomially covered. By a direct appli-
cation of Theorem 10, the associated positive linear operator is polynomial time computable
with respect to an oracle. If in addition the endpoints of these intervals are polynomial time
computable uniformly in n, then it is even simply polynomial time computable.

5 Conclusion and Perspectives

We have completed the complexity-theoretic classification of the three ‘prototypes’ of positive
linear functionals on C[0; 1]: evaluation (discrete) is polynomial-time computable whereas
both Riemann (absolutely continuous) and Cantor (singular continuous) integration both
correspond to the discrete complexity class #P1. More precisely they are uniformly second-
order polynomial-time equivalent in the following sense:

14 Hugo Férée and Martin Ziegler

Corollary 17. a) There exists a second-order polynomial-time computable operator
U : C([0; 1], [0; 1])→ C∞∞∞([0; 1]; [0; 1]), and second-order polynomial-time computable func-
tionals V1, V2,W : C([0; 1], [0; 1])× [−1; 1]→ [0; 1] such that the following holds:

∀f ∈ C([0; 1], [0; 1]) ∀0 ≤ a ≤ b ≤ 1 :

∫ b

a
f(t) dS(t) = W

(
f,

∫ V2(f,b)

V1(f,a)
U
(
f
)
(t) dt

)
.

b) There exists a second-order polynomial-time computable operator U : C([0; 1], [0; 1]) →
C∞∞∞([0; 1]; [0; 1]) and second-order polynomial-time computable functionals
V1, V2,W : C([0; 1], [0; 1])× [0; 1]→ [0; 1] such that the following holds:

∀f ∈ C([0; 1], [0; 1]) ∀0 ≤ a ≤ b ≤ 1 :

∫ b

a
f(t) dt = W

(
f,

∫ V2(f,b)

V1(f,a)
U
(
f
)
(t) dS(t)

)
.

Proof. Combine the second-order polynomial-time reductions of (smooth) Cantor integration
to and from #P according to Theorems 5c) and 6c) with the known second-order polynomial-
time reductions of (smooth) Riemann integration to and from #P. ut

Remark 18. a) [Kawa11, Theorems 4.18+4.21] originally have asserted maximization
and integration of bivariate functions

C([0; 1]2) 3 f 7→
(
[0; 1] 3 s 7→ max{f(s, t) : 0 ≤ t ≤ 1}

)
∈ C[0; 1] (3)

C([0; 1]2) 3 g 7→
(
[0; 1] 3 s 7→

∫ 1

0
g(s, t) dt

)
∈ C[0; 1] (4)

to be NP–complete and #P–complete, respectively. Since NP trivially reduces to #P,
transitivity yields the existence of a second-order polynomial-time reduction from maxi-
mization (3) to integration (4): which seems quite surprising.

b) Fact 3e+f) refers to a univariate variant of Equation (4) with varying lower and upper
integration bounds. In fact maximization in Equation (3) even remains NP–complete when
only varying the upper bound, that is, the operator

C([0; 1]) 3 f 7→
(
[0; 1] 3 s 7→ max{f(t) : 0 ≤ t ≤ s}

)
∈ C[0; 1]

Since such a reduction according to Definition 2e) is permitted only one invocation of the
integration operator, we wonder whether also integration remains #P–complete with only

upper bound varying: C([0; 1]) 3 g 7→
(
[0; 1] 3 y 7→

∫ y

0
f(t) dt

)
∈ C([0; 1]).

5.1 Prototype vs. the General Case

Our investigation of the complexity of positive linear functionals Ψ on C[0; 1] has focused on
prototypical examples of each of the three basic types according to Riesz–Markov–Kakutani.
For instance the d-dimensional Poisson problem has been shown [KSZ14] to boil down to
absolutely continuous integration (ii). It is, however, easy to find Ψ that are harder than
these prototypes: for example evaluation (i) at some EXP–complete point z ∈ [0; 1]. This
leads to

Question 19. Is there an integrable g : [0; 1]→ (0;∞) such that
∫ 1
0 f(t)·g(t) dt is polynomial-

time computable for every polynomial-time computable f ∈ C[0; 1] even in case P 6= NP 6=
P#P 6= PSPACE?

On the Computational Complexity of Positive Linear Functionals on C[0; 1] 15

Restricted to continuous g the answer is negative: Each such admits distinct rational (and in
particular polynomial-time computable) a, b ∈ [0; 1] and k ∈ N with 1/k ≤ |g| ≤ k on [a; b];
w.l.o.g. g = |g| there. Record that the polynomial-time computable smooth h : [0; 1] → [0; 1]
with #P1–‘complete’

∫ 1
0 h(t) dt can be achieved to vanish (with all derivatives) on (−∞; 0] ∪

[1;∞); cmp. [Ko91, Theorem 5.32d]. Scaling f(t) := h
(
t−a
b−a
)

thus is still smooth on [0; 1]
and polynomial-time computable; yet approximating

(b− a) · k ·
∫ 1

0
f(t) · g(t) dt ∈

[∫ 1

0
h(t) dt ; k2 ·

∫ 1

0
h(t) dt

]
up to error 2−n/k2 recovers

∫ 1
0 h(t) dt up to error 2−n. This leaves it to look for integrable,

nowhere essentially bounded g; cmp. http://math.stackexchange.com/questions/620959.

References

[BrGh11] V. Brattka, G. Gherardi: “Weihrauch degrees, omniscience principles and weak computabil-
ity”, pp.143–176 in J. Symbolic Logic vol.76:1 (2011).

[Coll14] P. Collins: “Computable Stochastic Processes”, arXiv:1409.4667 (2014).
[Cook91] S. Cook: “Computability and complexity of higher type functions”, pp.51–72 in Logic from Com-

puter Science (Y.N. Moschovakis, ed.), Springer (1991).
[FeHo13] H. Férée, M. Hoyrup: “Higher-order complexity in analysis”, in Proc. 10th Int. Conf. on Com-

putability and Complexity in Analysis (CCA’2013).
[FGH13] H. Férée, W. Gomaa, M. Hoyrup: “Analytical properties of resource-bounded real functionals”,

pp.647–671 in Journal of Complexity vol.30:5 (2014).
[Frie84] H. Friedman: “The Computational Complexity of Maximization and Integration”, pp.80–98 in

Advances in Mathematics vol.53 (1984).
[HeOg02] L.A. Hemaspaandra, M. Ogihara: The Complexity Theory Companion, Springer (2002).
[HiPa13] K. Higuchi, A. Pauly: “The degree structure of Weihrauch-reducibility”, pp.1–17 in Logical

Methods in Computer Science vol.9:2 (2013).
[HRW12] M. Hoyrup, C. Rojas, K. Weihrauch: “Computability of the Radon-Nikodym derivative”,

pp.1–11 in Computability vol.1 (2012).
[IBR01] R. Irwin, B. Kapron, J. Royer: “On Characterizations of the Basic Feasible Functionals, Part

I”, pp.117–153 in Journal of Functional Programming vol.11 (2001).
[KaCo96] B.M. Kapron, S.A. Cook: “A New Characterization of Type-2 Feasibility”, pp.117–132 in SIAM

Journal on Computing vol.25:1 (1996).
[KaCo10] A. Kawamura, S.A. Cook: “Complexity Theory for Operators in Analysis”, pp.495–502 in Proc.

42nd Ann. ACM Symp. on Theory of Computing (STOC 2010);
full version in ACM Transactions in Computation Theory vol.4:2 (2012), article 5.

[KaPa14] A. Kawamura, A. Pauly: “Function Spaces for Second-Order Polynomial Time”, pp.245–254 in
Proc. 10th Conf. on Computability in Europe, Springer LNCS vol.8493 (2014).

[Kawa11] A. Kawamura: “Computational Complexity in Analysis and Geometry”, Dissertation, University
of Toronto (2011).

[Ko91] K.-I. Ko: “Computational Complexity of Real Functions”, Birkhäuser (1991).
[MTY14] T. Mori, Y. Tsujii, M. Yasugi: “Computability of Probability Distributions and Characteristic

Functions”, Logical Methods in Computer Science vol.9:3 (2013).
[Schr07] M. Schröder: “Admissible Representations of Probability Measures”, pp.61–78 in Electronic

Notes in Theoretical Computer Science vol.167 (2007).
[KSZ14] A. Kawamura, F. Steinberg, M. Ziegler: “Complexity of Laplace’s and Poisson’s Equation”,

abstract p.231 in Bulletin of Symbolic Logic vol.20:2 (2014); full version to appear in Logical
Methods in Computer Science.

[KSZ15] A. Kawamura, F. Steinberg, M. Ziegler: “Computational Complexity Theory for classes of
integrable functions”, presented at the JAIST Logic Workshop Series (2015).

[Weih00] K. Weihrauch: “Computable Analysis”, Springer (2000).
[Weih03] K. Weihrauch: “Computational Complexity on Computable Metric Spaces”, pp.3–21 in Math-

ematical Logic Quarterly vol.49:1 (2003).

http://math.stackexchange.com/questions/620959
http://arXiv.org/abs/1409.4667

	REGULAR-SS11: On the Computational Complexity of Positive Linear Functionals on C[0;1]

