
Polynomial time computable real functions

Hugo Férée
Emmanuel Hainry, Mathieu Hoyrup, and Romain Péchoux

Loria, Nancy

Abstract. In this paper, we study computability and complexity of real functions. We extend
these notions, already defined for functions over closed intervals or over the real line to functions
over particular real open sets and give some results and characterizations, especially for polynomial
time computable functions. Our representation of real numbers as sequences of rational numbers
allows us to implement real functions in a stream language. We give a notion of second order
polynomial interpretation for this language to guarantee polynomial time complexity.

1 Introduction

Different models have been proposed to define computable real numbers and computable real functions
and their complexity. Most of them are based on variations of the Turing machine model (see for example
Ko [12] and Weihrauch [17] for recursive analysis and Blum et al. [3,4] for the BSS model), but quite
different ones also exist, such as the GPAC model [16,6]. Using Turing machine based models allows us
to use comparisons with computable type-1 functions (i.e. of type N → N) to justify the corresponding
definitions of computability and complexity in the domain of real functions and provide similar results. For
example, many machine independent characterizations of polynomial time computable type-1 functions
already exist, using various tools like function algebra [2] (i.e. a class of functions containing some basic
functions and closed under some operators, like composition and bounded recursion), typed lambda-
calculus [13], linear logic [10] or quasi-interpretation [5] or sup-interpretation [14]. In the same way, the
GPAC model [16,6] or the function algebra of Bournez and Hainry [7] are examples of characterizations
of some classes of computable real functions. It has also been shown [12,17] that (polynomial time)
computable real functions can be described using type-1 functions.

All these results consider functions defined over compact intervals and have been extended to functions
defined over the whole real line. Some work [18,12] has been done to study computability of functions
over some real open sets (mostly bounded open sets), but studying the complexity of such functions
leads to challenging issues, including: What kind of real domains make sense to define computable real
functions, and polynomial time computable real functions ? Once they are defined, how can we relate
these functions to total real functions or to type-1 functions ? We propose some definitions for functions
defined over quite general open domains and give answers to these questions.

Real functions can also be seen as particular cases of type-2 functionals (i.e. functions with arguments
of type-2: N → N). Kapron and Cook have found a function algebra (BFF [11]) corresponding to Basic
poly-time functionals [8]. But this definition of polynomial time complexity is not really adapted to
describe the complexity of real functions. We propose a variation of the Oracle Turing machine model
used for Basic poly-time functionals to define another class of type-2 functionals such that its restriction
to real functions gives exactly polynomial time computable (total) real functions.

Our representation of real numbers is closed to the notion of streams (i.e. infinite lists) defined in
a functional language like Haskell. In the same way that one can guarantee that a program computes
a polynomial time computable type-1 function by interpreting its functions by polynomials and by
checking that this interpretation (extended to any expression) verifies some properties (e.g. it decreases
when we apply a rule defining a function), we provide a way to ensure that a program with streams
computes a polynomial time computable type-2 function by interpreting symbol function symbols as
type-2 polynomials (i.e. polynomials with type-2 variables). These well interpreted programs compute
exactly the polynomial time computable type-2 functions, and it also happens that a small shift in the
definition of type-2 polynomials provides an equivalence with the functions of the BFF algebra.

This paper is organized as follows: We first define the notions of computability and complexity of
real functions in section 2 as it has been done in [12] and provide a way to describe real functions with
type-1 functions. We extend these notions and results to more general open domains in section 3 and

give a characterization of such functions as functions defined over R2. Then, in section 4, we describe our
oracle Turing machine model and define polynomial time computable type-2 functions. We study a simple
Haskell-like language which allows us to compute such functions, seeing type-2 arguments as streams. We
provide a notion of polynomial interpretation of such programs and prove that well interpreted programs
correspond exactly to polynomial-time type-2 functions. Finally, we shows how our Haskell-like language
and its well interpreted programs are related to polynomial time computable real functions.

2 Functions over R

2.1 Computability

We will restrict our study to functions over R, but it can be easily extended to Rn. We denote by ‖x‖
the absolute value of the real number x (which could, for example, be replaced with the euclidean norm
in Rn). We have chosen to represent real numbers using sequences of rational numbers. This choice is
justified in remark 1.

Definition 1 (Cauchy sequence representation) (qn)n∈N represents x ∈ R if ∀n ∈ N, ‖x − qn‖ ≤
2−n.

We will denote this by qn x and say that (qn)n∈N is a valid input sequence.

This means that the sequence converges to the real number, and that this convergence is effective.
The definitions of computability and complexity over real numbers come naturally:

Definition 2 A real number x is computable (resp. computable in polynomial time) if it is represented
by a computable sequence (qn)n∈N (resp. computable in polynomial time with respect to n).

Since real numbers have an infinite representation, we need a computational model reading and
writing infinite inputs:

Definition 3 (Infinite I/O Turing machine (ITM)) Let Σ be a finite alphabet and B 6∈ Σ be the
blank character. We say that a function F : ((Σ∗)N)k → (Σ∗)l → (Σ∗)N is computable by an ITM M if
for all (y1n)n∈N, . . . (y

k
n)n∈N and x1, . . . xl,M writes the sequence F (y1, . . . , yk, x1, . . . , xl) on its (one-way

moving) output tape if y1, . . . , yk, x1, . . . , xl are written on its input tapes as described in figure 1.

type-2 input tapes

y10 y11 y12

...

...

BB B

yk0 yk1 yk2BB B

. . .

. . .

type-1 input tapes

B . . .

. . .

B. . .

B . . .B. . . x1

xl

BBo0 o2 Bo1
one way moving
output tape

Fig. 1: Infinite I/O Turing machine model

In the following, we will consider functions on rational numbers and sequences of rational numbers.
Indeed, we can represent elements of Q with words on the binary alphabet alphabet Σ = {0, 1}.

Definition 4 A sequence function f̃ : QN → QN represents a real function f : R→ R if

∀x ∈ R,∀(qn)n∈N ∈ QN, (qn)n∈N x⇒ f̃((qn)n∈N) f(x)

2

Definition 5 By extension, a real function is computable if it is represented by a computable sequence
function.

A major restriction is that only continuous functions can be computed.

Property 1 Every computable function is continuous.

Proof

Proved, for example in [17]. �

Remark 1. One might be surprised that real numbers are not represented using their binary representa-
tion. The reason is that many simple functions, like x 7→ 3x are not computable using this representation.
Indeed, if a machine computed this function, then it would decide whether a real number is greater than
1/6 or not (or would decide the equality on real numbers, which is impossible according to property 1),
since the first bit of 3x is 1 if and only if x ≥ 1/6.

This is why we need a redundant representation, e.g. using rational numbers represented with two
or three binary integers, or a binary representation with signed bits (i.e. dyadic numbers) as it is done
in [12]. Also see Weihrauch [17] for details about acceptable representations.

In the following, we define Kn as the interval [−2n, 2n]. We will characterize the computability and
complexity of a function using its modulus of continuity on each of these intervals.

Definition 6 A function f : R→ R is described by fQ : N→ Q→ Q and fm : N→ N→ N if:

P1 : ∀a, p ∈ N, q ∈ R, x ∈ Ka, ‖x− q‖ ≤ 2−fm(a,p) ⇒ ‖f(x)− f(q)‖ ≤ 2−(p+1)

P2 : ∀p ∈ N, q ∈ Q, ‖fQ(p, q)− f(q)‖ ≤ 2−(p+1)

The first property asserts that for all a, fm(a, .) is the modulus of continuity of f on Ka. The second
one stands that on any rational input q, f(q) can be approximated at will by a rational of the form
fQ(p, q).

We claim that (and it is easy to check that) there exists a polynomial time computable function
γ : Q→ N such that: ∀q ∈ Q, q ≤ 2γ(q)−1 (which implies that if (qn)n∈N x, then x ∈ Kγ(q0)).

The following functional uses two such functions and γ to compute a real function. @(fQ, fm) : QN →
QN is defined by:

(qn)n∈N 7→ (fQ(n, qfm(γ(q0),n)))n∈N

Property 2 If f is described by fQ and fm, then @(fQ, fm) represents f .

Proof

Let x ∈ R, (qn) ∈ QN such that (qn) x and n ∈ N.

‖f(x)− (@(fQ, fm)(x))n‖ = ‖f(x)− fQ(n, qfm(γ(q0),n))‖

≤ ‖f(x)− f(qfm(γ(q0),n))‖+ ‖f(qfm(γ(q0),n))− fQ(n, qfm(γ(q0),n))‖
by triangular inequality.

By property P1, since x ∈ Kγ(q0) and ‖x−qfm(γ(q0),n)‖ ≤ 2−fm(γ(q0),n) we have ‖f(x)−f(qfm(γ(q0),n))‖ ≤
2−(n+1)

By property P2 we get ‖fQ(qfm(γ(q0),n))− fQ(n, qfm(γ(q0),n))‖ ≤ 2−(n+1). Summing these two bounds
allows us to conclude. �

Corollary 1 If fQ and fm are computable, then f is computable.

Property 3 Any computable real function f can be described by two (type-1) computable functions fQ
and fm.

3

Proof

Let f be a computable function and M a machine computing f . The modulus of continuity fm is
computable. This is proven in [17].

We can define fQ(n, q) as the (n+1)th element of the output sequence produced by M on the constant
sequence q. This function is clearly computable and gives a 2−(n+1) approximation of f(q). �

This kind of representation can be used, for example, to prove the stability of computable functions
(and later of polynomial time computable real functions) by some functional operators. Here, we will
prove that composition preserves computable real functions (as it preserves computable type-1 functions).
Intuitively, to compute f ◦g(x), we need to bound ‖g(x)‖ to know which precision is required to compute
g(x).

Definition 7 (Composition) Let us define (fQ, fm) ◦ (gQ, gm) = (hQ, hm) by:

hQ(p, q) = fQ(p+ 1, gQ(p′, q))

hm(a, p) = gm(a, fm(a′, p)− 1)

where p′ = fm(γ(gQ(0, q)), p+ 1)− 1 and a′ = max(γ(gQ(0, 0)) + 1, gm(a, 0) + a)

To prove that this composition over couples of such functions represents the composition of the
corresponding real functions, we need the following lemma:

Lemma 1 If f is represented by fm and fQ, then ∀a, f(Ka) ⊆ Ka′ , where a′ is defined in definition 7.

Proof

If x ∈ Ka, the interval bounded by 0 and x can be divided into 2fm(a,0)+a intervals of size less
than 2−fm(a,0). On each interval, f cannot vary by more than 1

2 , by property P1. So ‖f(x) − f(0)‖ ≤
2fm(a,0)+a−1, which gives:

‖f(x)‖ ≤ ‖f(0)‖+ 2fm(a,0)+a−1 ≤ 2γ(fQ(0,0)) + 2fm(a,0)+a−1 ≤ 2max(γ(fQ(0,0))+1,fm(a,0)+a)

and we have f(x) ∈ Ka′ . �

Property 4 If (fQ, fm) describes f and (gQ, gm) describes g,
then (fQ, fm) ◦ (gQ, gm) describes f ◦ g.

Proof

Let us consider (hQ, hm) = (fQ, fm) ◦ (gQ, gm)

– Let a, p ∈ N, q ∈ R and x ∈ Ka such that ‖x − q‖ ≤ 2−hm(a,p). Then by definition of hm, and
property P1 for g, we have ‖g(x) − g(q)‖ ≤ 2−fm(a′,p). Lemma 1 ensures that g(x) ∈ Ka′ . Then by
property P1 for f , be obtain property P1 for g ◦ f .

– Let p ∈ N and q ∈ Q. Then

‖hQ(p, q)− f(g(q))‖ = ‖fQ(p+ 1, gQ(p′, q))− f(g(q))‖

≤ ‖fQ(p+ 1, gQ(p′, q))− f(gQ(p′, q))‖+ ‖f(gQ(p′, q))− f(g(q))‖
by triangular inequality. The first term is bounded by 2−(p+2) according to property P2 for f . We have
g(q) ∈ Kγ(gQ(0,q)) by construction of γ, and ‖gQ(p′, q)−g(q)‖ ≤ 2−fm(γ(gQ(0,q)),p+1) by property P2 for

g and by definition of p′. Then by property P1 for f , we obtain ‖f(p+1, gQ(p′, q))−f(g(q))‖ ≤ 2−(p+2),
then the sum of these two terms is bounded by 2−(p+1), which gives property P2 for h.

�

One issue is that to prove that fm and fQ describe a given function, we need properties P1 and P2,
which depend on f . Here is another characterization independent from f , using the Cauchy criterion:

4

Property 5 If fQ and fm verify the following properties then they describe a real function:

P ′1 : ∀a, p ∈ N, q, q′ ∈ Ka ∩Q, ‖q − q′‖ ≤ 2−fm(a,p) ⇒ ‖fQ(p, q)− fQ(p, q′)‖ ≤ 2−(p+2)

P ′2 : ∀p, p′ ∈ N, q ∈ Q, ‖fQ(p, q)− fQ(p′, q)‖ ≤ 2−(min(p,p
′)+1)

Proof

Assume that fQ and fm verify P ′1 and P ′2. Then P ′2 means that for all q ∈ Q, (fQ(p, q))p∈N is a Cauchy
sequence, and so converges. This defines a function f over rational numbers. Moreover, property P ′1
implies that this function is uniformly continuous over every compact of Q. Then, f can be uniquely
extended as a continuous function on R, by density of Q in R. Let us prove that fQ, fm and f verify
properties P1 and P2: P2 comes naturally by taking the limit in P ′2 (p′ → ∞). For a, p ∈ N, x, y ∈ Ka

such that ‖x − y‖ ≤ 2−fm(a,p), there exists xn and yn such that (xn) x and (yn) y and ∀n ∈
N, ‖xn−yn‖ ≤ 2−fm(a,p) (if x 6= y, we can take (xn) and (yn) between x and y). By triangular inequality,
we have for all n:

‖f(xn)− f(yn)‖ ≤ ‖f(xn)− fQ(p+ 2, xn)‖+ ‖f(yn)− fQ(p+ 2, yn)‖+ ‖fQ(p+ 2, xn)− fQ(p+ 2, yn)‖

The first two terms are bounded by 2−(p+3) by property P2, and the third one is bounded by 2−(p+2) by
property P ′1. The required inequality comes by taking the limit for n→∞ in ‖f(xn)−f(yn)‖ ≤ 2−(p+1),
by continuity of f . �

Remark 2. Conversely, if f is described by fQ and fm, it is easy to check that Fm defined by a, p 7→
fm(a, p+ 1) and FQ defined by p, q 7→ fQ(p+ 1, q) verify properties P ′1 and P ′2, and these two functions
also describe f . This means that the set of computable functions verifying P ′1 and P ′2 also characterize the
set of computable real functions (and the polynomial ones characterize the set of computable polynomial
functions, as defined in the following).

Note that these properties are co-semidecidable (assuming that fm and fQ are total), which means
that we can write a program (using an implementation of fm and fQ terminating if and only if these
properties are not verified).

2.2 Complexity

As FPTIME can be defined using classical Turing machines, we can define polynomial time computable
real functions on ITMs. To do so, we need to measure the size of our infinite inputs.

Definition 8 The size of a sequence (qn)n∈N is the function n 7→ maxk≤n |qk|, where |qk| is the size of
the binary representation of qk.

Definition 9 (Execution time) A Turing machine has execution time T : N→ N→ N if on any valid
input, the nth element of the output sequence will be written after at most T (n, b(n)) steps, where b(n)
bounds the size of the input.

Then, a machine has polynomial time complexity if its execution time is bounded by a polynomial.
The main difference with natural numbers is that real numbers have infinitely many representations.

We will need the following lemma, expressing that any real number admits a representation with a
reasonable size.

Lemma 2 Any real number in Ka can be represented by a sequence such that the size of its nth element
is bounded by a polynomial in a and n.

Proof

If x ∈ Ka, take (bx2
nc

2n)n∈N. Then bx2nc ≤ 2a+n, so the encoding of (bx2
nc

2n) is of size at most a + 2n
(depending on the choice of the encoding of rational numbers). �

This property is an adaptation of properties 2 and 3 for polynomial time computability (an analogous
result was proven in [12] for functions defined on dyadic numbers).

5

Proposition 1. A real function can be computed by a polynomial time machine if and only if it can be
described by two (type-1) functions fQ and fm where fQ is computable in polynomial time, and fm is a
polynomial.

Proof

If f is described by such functions (fQ, fm), then we can describe the execution of a polynomial time
machine computing f by looking at @(fQ, fm).

Conversely, let M be a polynomial time machine computing f in time P . Property 3 shows how to
construct fQ from M . This function is polynomial, by construction. We can take fm : a, p 7→ P (p +
2, L(a, p + 2)) as modulus of continuity (it is polynomial in a and p if L is the bounding polynomial of
lemma 2): Let a, p ∈ N, q ∈ R and x ∈ Ka such that ‖x − q‖ ≤ 2−fm(a,p). Assume that x and q are
computable. Then, from two sequences representing x and q, we can construct two sequences representing
them with the same fm(a, p) first elements (e. g. any rational number between x and q) whose sizes are
bounded by L(a, p), according to lemma 2. Then, the execution of M on these two inputs provides the
same first (p+ 2) output elements (P (p+ 2, L(a, p+ 2)) bounds the time needed to write these elements
and then bounds the number of input elements read). This ensures that ‖f(x)− f(q)‖ ≤ 2−(p+1).

Since the inequality holds for computable real numbers, by density of computable real numbers and
by continuity of f , we can conclude for arbitrary input entries. �

Remark 3. It is sufficient to say that fm is bounded by a polynomial.

As for type-1 functions, polynomial time computable functions cannot grow too fast:

Property 6 If f is a polynomial time computable function, then there exists a polynomial P such that
∀n, f(Kn) ⊆ KP (n)

Proof

Lemma 1 provides the result since fm is a polynomial. �

Remark 4. This implies that ∀x, ‖f(x)‖ ≤ 2P (blog(‖x‖)c) where P is a given polynomial. This bound can
be useful to prove that a function is not polynomial time computable. It is indeed straightforward that
exp is not polynomial time computable over R.

We have characterized polynomial time computable real functions using type-1 polynomial time
computable functions, which can be in turn characterized with lots of various methods, for example
using functions algebras (see, for example, Bellantoni & Cook [2]), or typed lambda calculus (Leivant &
Marion [13]).

3 Functions over recursively open sets

3.1 Computability

Now that we have extended the notions of computability and polynomial time complexity to functions
over R, we would like to do the same on more general domains to analyze the computability and com-
plexity of common functions like the inverse function, the floor function, log or tan, which are not defined
on R or on a compact set.

We will work on these particular domains:

Definition 10 Let D ⊆ R be an open set. D is recursively open if D = R or the distance function to
Dc is computable (where Dc = R \D).

Example 1 R\{a},R\[a, b], (a, b),R\E are recursively open sets (where a, b are computable real numbers
and E ⊆ N is a recursive set).

Remark 5. [12] If F is a recursively open set, then there exists φ : N → Q computable such that
D =

⋃
n∈N(φ(2n), φ(2n+ 1)).

6

Computable functions over D can be defined analogously as in section 2.

Definition 11 A sequence function f̃ : QN → QN represents f : D → R if:

∀x ∈ D, (qn)n∈N ∈ QN, (qn)n∈N x⇒ f̃((qn)n∈N) f(x)

Lemma 3 The intersection of two recursively open sets is a recursively open set.

Proof

If A and B are recursively open, then the distance functions d(., Ac) and d(., Bc) are computable (the
case A = R or B = R is trivial). Then the function x 7→ min(d(x,Ac), d(x,Bc)) is computable, and since
it is the distance function to Ac ∪Bc = (A ∩B)c, A ∩B is a recursively open set. �

So if f and g are respectively computable over D and D′, f + g, f × g, min(f, g) and max(f, g) are
computable over D ∩D′.

It is quite simple to show that if f(D) ⊆ D′, then g ◦ f is computable over D.
As in section 2, we can describe computable functions using two type-1 functions. But D ∩ Kn is

not necessarily a compact set, and then, a computable function does not necessarily have a modulus
of continuity on it. This is why we need to define Dn as the set {x | d(x,Dc) ≥ 2−n}, i. e. the set of
points of D at distance at least 2−n of the boundary of D. Then, a computable function has a modulus
of continuity over each compact set Dn ∩Kn, and we can give characterization of computable functions
adapted from the one of section 2.

Definition 12 f : D → R is described by fQ and fm over the recursively open set D if ∀a, p, fm(a, p) ≥ p
and:

PD1 : ∀a, p ∈ N, q ∈ R, x ∈ Ka ∩Da, ‖x− q‖ ≤ 2−fm(a,p) ⇒ ‖f(x)− f(q)‖ ≤ 2−(p+1)

PD2 : ∀p ∈ N, q ∈ Q ∩D, ‖fQ(p, q)− f(q)‖ ≤ 2−(p+1)

Property 7 A function f : D → R is computable over D if and only if it can be described over D by
two (type-1) computable functions.

Proof

To compute f on x ∈ D, compute a 2−n approximation dn of d(x,Dc) until dn ≥ 2−n+1. If such a
n exists, d(x,Dc) ≥ dn − 2−n = 2−n and x ∈ Dn. This is the case because there exists a such that
x ∈ Da, and we have: da+2 ≥ d(x,Dc) − 2−(a+2) = 3 × 2−(a+2) ≥ 2−(a+1). Then, we can find n′ such
that x ∈ Dn′ ∩Kn′ , compute a 2−fm(n′,p) approximation of x and apply fQ(p, .) on it.

This amounts to modify the γ function of section 2 to guarantee that x ∈ Dγ(x) ∩Kγ(x) (x ∈ Dγ(x)

in section 2) and to use the same @ operator.
Conversely, the proof of section 2 still holds, except that f is only continuous on every open interval

(φ(2n), φ(2n+1)), so effectively uniformly continuous on each closed interval included Dn. Then we need
the condition ∀a, p, fm(a, p) ≥ p to guarantee that x and y are in the same interval in property PD1 . �

3.2 Complexity

As we made the complexity of a function on R depend on the size of the compact Kn on which it was
calculated, we need to take into account the distance to the border of the domain. For example, the
computation time of x 7→ 1/x (or log) grows when x becomes close to 0 and we need to measure this
growth.

We cannot define polynomial time complexity on every recursively open set since they can be arbi-
trarily complex. The distance function to Dc being the most simple non trivial function on a recursively
open set D, we need it to be easily computable:

Definition 13 A polynomial open set is either R or a recursively open set such that the distance to its
complement is computable in polynomial time (in the sense of section 2).

7

Example 2 R \ {a},R \ [a, b], (a, b),R \ N are polynomial open sets (where a, b are polynomial-time
computable real numbers).

Lemma 4 If D is a polynomial open set, then for all x in Da ∩ Ka, from a representation (qn) of x,
one can compute a′ ≤ a+ 2 such that x ∈ Da′ in time polynomial in a.

Proof

The proof of property 7 describes how to get such a′ in polynomial time. �

Definition 14 f : D → R has polynomial time complexity over D if D is a polynomial open set and
there is a polynomial P and an ITM machine computing f(x) with precision 2−p in time P (a, p) (in the
sense of definition 9) for all x in Da ∩Ka.

Example 3 The inverse function has polynomial time complexity over R \ {0}.
R \ {0} is a polynomial open set, since the distance to {0} is the absolute value, which is computable

in polynomial time over R. If ‖x‖ ≥ 2−n and ‖q − x‖ < 2−(2n+p+2), then

‖ 1

x
− 1

q
‖ ≤ ‖x− q

xq
‖ ≤ 2−(2n+p+2)

2−(2n+1)
≤ 2−(p+1)

To compute 1
x with precision 2−p, we compute x with precision polynomial in n and p, and then, computing

the inverse of a rational number is immediate.

This example invites us to provide a result similar to proposition 1 for functions over polynomial
open sets:

Proposition 2. A real function on a polynomial open set D has polynomial time complexity if and only
if it can be described over D by two (type-1) functions fQ and fm where fQ is computable in polynomial
time over D (i. e. if q ∈ Dn, fQ(p, q) can be computed in polynomial time in p, n and the size of q) and
fm is (or is bounded by) a polynomial.

Proof

The proof of property 7 shows that in this case, the γ function and the @ operator can be computed
in polynomial time. Conversely, a simple adaptation of the proof of proposition 1 shows that the fQ
function can be constructed from f and is computable in polynomial time over D, and the same modulus
of continuity works. �

Remark 6. Sum, product, scalar multiplication (by a polynomially computable real number), min and
max preserve polynomial time computable complexity (over the intersection of their definition domain).

This mainly comes from lemma 3 which can be adapted to prove that the intersection of two polynomial
open sets is a polynomial open set (since min preserves polynomial time complexity).

Similarly to previous section, a polynomial time computable function does not grow too fast when
its argument grows or becomes close to the border of the definition domain.

Property 8 If f has polynomial time complexity, then there exists a polynomial P such that ∀n, f(Dn∩
Kn) ⊆ KP (n).

Proof

If x ∈ Da ∩ Ka, is computable, then is has a representation (xn) of size n 7→ L(a, n) according to
lemma 2. Then, (xn+a+1) is a representation of x of size n 7→ L(a, n + a + 1) and ∀n, xn+a+1 ∈ Da+1.
f is polynomial time computable, so there exists a machine computing f on (xn+a+1) with precision
1 in time P (0, L(a, a + 1)) where P is a polynomial. This is polynomial in a, and the number of steps
bounds the size of the output, so f(x) has polynomial size with respect to a, so ‖f(x)‖ ≤ 2Q(a) for some
polynomial Q independent from x. �

The composition is not as easy as for functions defined everywhere since it does not always preserve
polynomial time complexity:

8

Example 4 f : x 7→ 2−
1

‖x‖ and g : x 7→ 1
x have both polynomial time complexity on R \ {0}. f−1(R∗) =

R∗, but the composition x 7→ 2
1

‖x‖ is not polynomially computable on R∗ for it would be in contradiction
with property 8 (g ◦ f(2−n) = 22

n

).

Nevertheless, we can give some sufficient conditions to ensure safe composition.

Definition 15 f has strong polynomial time complexity over D onto D′ if f is polynomial over D and
there exists a polynomial P such that ∀n, f(Dn) ⊆ D′P (n).

Property 9 If g has polynomial time complexity over D′, and f has strong polynomial time complexity
from D onto D′, then the composition g ◦ f has polynomial time complexity over D.

Proof

Since f has strong polynomial time complexity from D onto D′, there exists a polynomial P such that
x ∈ Kn ∩Dn, f(x) ∈ D′P (n). We compute f(x) with precision gm(P (n), p) and then compute a (p + 1)
approximation of g on the result. This takes polynomial time in n and p if f and g have polynomial time
complexity over their respective domain. �

Example 5 tan has polynomial time complexity over Dtan = R \ {π2 + kπ | k ∈ Z}. It is folklore that
sin and cos are computable in polynomial time over R.

cos((Dtan)n ∩Kn) ⊆ cos((Dtan)n) = [−1, 1] \ [cos(
π

2
+ 2−n), cos(

π

2
− 2−n)] =

[−1, 1] \ [− sin(2−n), sin(2−n)] ⊆ [−1, 1] \ [−2−(n+1), 2−(n+1)] ⊆ (R∗)n+1

Then, property 9 implies that x 7→ 1
cos(x) has polynomial time complexity over Dtan, and remark 6 provides

that the multiplication by sin preserves polynomial time complexity, so tan = sin
cos has polynomial time

complexity over Dtan.

We can find simple functions which do not verify the hypothesis of property 9 but whose composition
is a polynomial-time computable function (e. g. replace g with a constant function in example 4), but
strong polynomial time complexity is necessary in some sense:

Property 10 If f : D → R is computable in polynomial time over D, and if f does not have strong
polynomial time complexity onto a polynomial open set D′ (such that f(D) ⊆ D′)), then there exists a
polynomial time computable function g : D′ → R such that the composition g◦f does not have polynomial
time complexity.

Proof

g : x 7→ 1
d(x,D′c) is computable in polynomial time over D′ since D′ is a polynomial open set (so the

distance to D′c is computable in polynomial time), the inverse function is computable in polynomial
time over R ⊆ {0} (see example 3) and x 7→ d(x,D′c) maps D′n into (R \ {0})n. Since f is not strongly
polynomial onto D′, there exists a sequence (xn) such that ∀n, xn ∈ Dn ∩Kn and f(xn) 6∈ D′h(n) where

h cannot be bounded by a polynomial. Then, ∀n, g ◦ f(xn) ≥ 2h(n). This would be in contradiction with
property 8 if g ◦ f were computable in polynomial time. �

To sum up, we can say that the following are equivalent (for all f with polynomial time complexity
over D, and all D′ ⊆ f(D) polynomial open set):

– for all g with polynomial time complexity over D′, g ◦ f has polynomial time complexity over D.
– g ◦ f has polynomial time complexity over D where where g : x 7→ 1

d(x,Dc) .

– f has strong polynomial time complexity over D onto D′.

The next property links functions defined over a computable interval with functions defined over R.

Property 11 If a and b are polynomial time computable real numbers, then there exists a polynomial-
time computable bijection h : R→ (a, b) whose inverse is polynomially computable such that:

9

– if f : (a, b)→ R is polynomial-time computable over (a, b), then f ◦ h is polynomial-time computable
over R

– if f : R→ R is polynomial-time computable, then f ◦ h−1 is polynomial-time computable on (a, b)

Proof

For the sake of simplicity, we assume a = 0 and b = 1. Since a and b are computable in polynomial
time, we can prove the general case by simple translation and scaling operations, which can be done

in polynomial time. We take h(x) = x+|x|+1
2(|x|+1) . h is clearly computable in polynomial time over R. If f

has polynomial time complexity over (0, 1) then according to property 9, we only need to show that
h([−2n, 2n]) ⊆ [2−P (n), 1− 2−P (n)] for some polynomial P :

h([−2n, 2n]) = [
1

2(2n + 1)
,

2n+1 + 1

2(2n + 1)
] ⊆ [2−(n+2), 1− 2−(n+2)]

On the other hand, h−1 is defined by 1− 1
2x if x < 1

2 and 1
2(1−x) − 1 if x ≥ 1

2 h
−1 behaves as the inverse

function in the neighborhood of 0 and 1. A proof similar to example 3 shows that h−1 is also computable
in polynomial time on (0, 1). We also have

h([2−n, 1− 2−n]) = [1− 2n−1, 2n−1 − 1] ⊆ [−2n, 2n]

and property 9 provides the polynomial complexity of f ◦ h−1 if f : R→ R is computable in polynomial
time. �

It is obvious that a (polynomially) computable function over [0, 1] is also (polynomially) computable
over (0, 1). But conversely, a computable function over (0, 1) may not have a limit in 0 or 1, and even
when the limit exists, the extended function may not be computable.

Example 6 There exists a polynomially computable function over (0, 1) with a finite limit in 0, but its
continuous extension to [0, 1) is not computable.

Proof

Pour-el and Richards [15] have shown that there exists a computable sequence (an) of rational numbers
which converges (thus not effectively) to a non computable real number a. We can even choose this
sequence computable in polynomial time (we can repeat an t(n) times if t(n) is the number of steps used
to compute an). The piecewise linear function defined by f(2−n) = an is computable in polynomial time
over (0, 1) and limx→0 f(x) = a. But the extension of f onto [0, 1) cannot be computable over the closed
interval because a would be computable. �

The following theorem gives a simple characterization of polynomial time functions over a polynomial
open set using total functions (from R2).

Theorem 1 A real function f defined on a polynomial open set D has polynomial time complexity if
and only if there exists g : R2 → R with polynomial time complexity on R2 such that ∀x ∈ D, f(x) =
g(x, 1

d(x,Dc)).

Proof

If f has polynomial time complexity over D, then we defined (informally) g by g(x, y) = 0 if x ∈ Dc

and if x ∈ D, g(x, y) = f(x)× θ(d(x,Dc), y), where θ is defined as follows:

– If |x| ≥ 1
|y|+1 then θ(x, y) = 1

– If 1
2(|y|+1) ≤ |x| ≤ 1

|y|+1 then θ(x, y) = 2|x|(|y|+ 1)− 1

– If |x| ≤ 1
2(|y|+1) then θ(x, y) = 0

10

We claim that θ is a piecewise linear function (see figure 2) and has polynomial time complexity over R2.

1

1
2(|y|+1)

1
|y|+1− 1

2(|y|+1)− 1
|y|+1

Fig. 2: The θ function for a given y.

g is computable in polynomial time on rational numbers since it only involves simple arithmetic
operations and comparisons and an approximation of f(x) when d(x,Dc) ≥ 1

2(|y|+1) . In this case, if

x ∈ Ka and y ∈ Ka′ , d(x,Dc) ≥ 1
2(2a′+1)

≥ 2−(a
′+2), thus x ∈ Da′+2 and f(x) with precision 2−p is

computable in polynomial time in p and max(a, a′ + 2).
g also has a polynomial modulus of continuity since f has a polynomial modulus of continuity (in a)

over the set {x | d(x,Dc) > 1
2(2a+1)}.

According to proposition 1, g has polynomial time complexity over R2. Now, we have that ∀y ≥
1

d(x,Dc) , g(x, y) = f(x) since in this case d(x,Dc) ≥ 1
1

d(x,Dc)
+1
≥ 1
|y|+1 (this stronger property will be

useful in corrolary 2).
Conversely, if g has polynomial time complexity over R2 and if we define f on D by ∀x ∈ D, f(x) =

g(x, 1
d(x,Dc)), then f has polynomial time complexity over D: Let x be in Ka ∩Da. Then 1

d(x,Dc) ∈ Ka

and it is computable in polynomial time in a (according to the proof of property 10) , by definition
of polynomial time computability over R2, g(x, 1

d(x,Dc)) is computable in time polynomial in a, which

means that f has polynomial time complexity over D. �

The Tietze extension theorem states that any continuous function over a compact set can be extended
into a continuous function over any larger compact set. Zhou [18] has proved an effective version of this
theorem and here we prove a variant for polynomial time computable functions over polynomial open
sets. and

Corollary 2 (Polynomial Tietze extension theorem) f has polynomial time complexity over the
polynomial open set D if and only if there exists a sequence (fn)n∈N of polynomial time real functions,
whose complexity polynomially depends on the index n such that for all n ∈ N, fn extends f|Dn

over R.

Proof

We can pose fn(x) = g(x, 2n), where g is the function defined in theorem 1. According to the previous
proof, ∀x ∈ Dn, fn(x) = f(x) since ∀x ∈ Dn, 2

n ≥ 1
d(x,Dc) . Since g has polynomial time complexity over

R2 and 2n ∈ Kn+1, fn has polynomial time complexity and its complexity polynomially depends on n.
Conversely, if we are provided with such functions (fn)n∈N, we can compute f(x) = limn→∞ gn(x)

on x ∈ Da ∩Ka by computing a′ as defined in lemma 4 and then computing fa′(x). �

4 Polynomial interpretation of stream programs

In this section, we define another computation model (which is in fact equivalent to the ITM one in
terms of computability), since it is more convenient for our purpose. We show that the corresponding

11

polynomial functions are the functions computed by programs using streams verifying some conditions.
Finally, we see how this model and programs are related to polynomial time computable real functions.

4.1 Polynomial time type-2 Turing machines

We use the modified model of oracle Turing machine of Kapron and Cook [11] where oracles are functions
(from N to N):

Definition 16 (Oracle Turing machine) An oracle Turing machine (also called OTM or type-2 ma-
chine in the following) M with k oracles and l input tapes is a Turing machine with, for each oracle,
a state, one query tape and one answer tape. If M is used with oracles F1, . . . Fk : N → N, then on
the oracle state i, Fi(|x|) is written on the corresponding answer tape, whenever x is the content of the
corresponding query tape.

Definition 17 (Size of function) The size of F : N→ N is defined by: |F |(n) = maxk≤n |F (k)| where
|F (k)| represents the size of the binary representation of F (k).

Remark 7. This notation is the same as for the size of the binary representation of an integer, but in the
following, the meaning will be clear from the context.

Definition 18 (Running time of an OTM) The weight of a step is |F (|x|)| if it corresponds to a
step from a query state of the oracle F on input query x and 1 otherwise. An OTM M has running time
T : (N → N)k → N → N if for all inputs x1, . . . xl : N and F1, . . . Fk : N → N, the sum of the weighted
steps before M halts on these inputs is less than T (|F1|, . . . , |Fk|, |x1|, . . . , |xl|).

Definition 19 (Second order polynomial) A second order polynomial is a polynomial with first or-
der and second order variables:

P := c | Xi | P + P | P × P | Yi〈P 〉

where Xi represents a first order variable, Yi a second order one and c a constant in N.

The following example shows the implicit meaning of a substitution of a type-2 variable:

Example 7 If P (Y,X) = Y 〈Q(X)〉 , then if f is a function of type N → N, then P (f,X) is the
polynomial f(Q(X)).

In the following, P (Y1, . . . , Yk, X1, . . . , Xl) will implicitly denote a second order polynomial where
each Yi represents a type-2 variable, and each Xi a type-1 variable.

Definition 20 A function F : (N → N)k → Nl → N has polynomial time complexity if there exists a
type 2 polynomial P such that F (y1, . . . , yk, x1, . . . xk) is computed by an oracle Turing machine in time
P (|y1|, . . . , |yk|, |x1|, . . . , |xl|) on inputs x1, . . . , xl and oracles y1, . . . , yk.

Remark 8. Our model is inspired by the oracle Turing machine model used to define Basic Poly-time
functionals. In this model, the output of the call of oracle F on x is not F (|x|), but F (x), and the size
of an oracle function is |F |(n) = max|k|≤n |F (k)| (instead of |F |(n) = maxk≤n |F (k)|). The set of our
polynomial time computable functions is then a strict subset of Basic Poly-time (proved to be equal to
the BFF algebra in [11]).

The following example gives the intuition of the main difference between these two models.

Example 8 The function F, x → F (|x|) has polynomial time complexity (bounded by 2(|x| + |F |(|x|)):
cost to copy x on the query tape and query the oracle), whereas F, x → F (x) does not (but is in BFF
). Indeed, BFF functionals can access to the nth value of one of their input functions in time F (|n|)
whereas our polynomial functionals can only access to their nth element in time F (n) (in this sense, F
can be seen as a stream, as we will see in the following).

The following remark shows that polynomial ITM and OTM compute the same functions in some
sense.

12

Remark 9. If F : ((Σ∗)N)k → (Σ∗)l → (Σ∗)N is computed in polynomial time by an ITM, then F̃ : (N→
Σ∗)k → (Σ∗)l+1 → σ∗ defined by

F̃ (F1, . . . , Fk, x1, . . . , xl, n) = (F ((F1(i))i∈N, . . . , (Fk(i))i∈N, x1, . . . , xl))|n|

is computable in polynomial time by a type-2 Turing machine. This amounts to build an OTM which
simulates the initial ITM, and between each step, writes on the simulated type-2 input tapes the successive
values of k → Fi(k) (obtained by oracle calls). Instead of writing the sequence (xn)n∈N on an infinite
tape (as in the ITM), we provide the oracle n→ xn to the OTM.

The following lemma will be useful later:

Lemma 5 If P is a second-order polynomial, then F1, . . . , Fk, x1, . . . xl → 2P (|F1|,...,|Fk|,|x1|,...,|xl|) − 1
(i.e. the word 1 . . . 1 of size P (|F1|, . . . |Fk|, |x1|, . . . , |xl|)) is computable in polynomial time.

Proof

The addition and multiplication on unary integers, and the function x→ |x| are clearly computable in
polynomial time. Polynomial time is also stable under composition, so we only need to prove that the size
function(i.e. F, n→ |F |(|n|) in definition 17) is computable in polynomial time. This is the case since it
is a max over |n| elements of length at most |F |(|n|) (see lemma 8 for a functional implementation). �

4.2 Definition of the language

We define here a simple Haskell-like language where we consider streams to be infinite lists. This is a
difference with Haskell, where streams are defined as finite and infinite lists, but this is not restrictive
since our language also allows to define finite lists and we are only interested in showing properties of
type-2 functionals. We denote by F the set of function symbols, C the set of constructors (including the
stream constructor :) and X the set of variable names. Programs in our language are lists of definitions
D given by the following grammar:

p ::= x | c p1 . . . pn | p : y (Patterns)
e ::= x | t e1 . . . en (Expressions)
d ::= f p1 . . . pn = e (Definitions)

where x ∈ X , t ∈ C ∪ F , c ∈ C \ {:} and f ∈ F . For the sake of simplicity, we only allow patterns
of depth 1 for the stream constructor (i.e. y or p : y). This is not restrictive since a program with
higher pattern matching depth can be easily transformed into a program of this form using some more
function symbols and definitions (see remark 13). Programs can contain inductive types (denoted by
Tau in the following), including unary integers (defined by data Nat = 0 | Nat + 1) and co-inductive
types defined (for each inductive type Tau): data [Tau] = Tau : [Tau]. We restrict all our functions
to have either type [Tau]k → Taul → Tau or type [Tau]k → Taul → [Tau] (with k, l ≥ 0). We define
lazy values by lv ::= c e1 . . . en and strict values by v ::= c v1 . . . vn. We also define the size of a closed
expression: |t e1 . . . en| = 1 + |e1| + · · · + |en|. In a definition, patterns do not share variables and all
pattern matchings are exhaustive.

Derivation rules:

(f p1 . . . pn = e) ∈ D σ ∈ S ∀i, σ(pi) = ei

f e1 . . . en → e{−−−−−→σ(xi)/xi}
(d)

This is the application of some definition of the function symbol f (S represents the set of substitu-
tions,i.e. mapping variables into expressions).

ei → e′i t ∈ F ∪ C \ {:}
t e1 . . . ei . . . en → t e1 . . . e′i . . . en

(t)

This rule allows to reduce the argument of a function symbol or an expression under a constructor
(different from the stream constructor).

e→ e′

e : e0 → e′ : e0
(:)

13

The head of a stream can be reduces, contrary to its tail.
Notice that this derivation is not deterministic and that we can use a lazy, call-by-need strategy to

mimic Haskell’s semantic.

4.3 Polynomial interpretations

In the following, let positive functionals denote functions of type (N→ N)k → Nl → N with k, l ∈ N.

Definition 21 (Partial order over positive functionals) Given two positive functionals F,G : (N→
N)k →l N→ N we define F > G by:

∀F1, . . . , Fk : N→ N,∀x1 . . . xl : N \ {0}, F (F1, . . . , Fk, x1, . . . , xl) > G(F1, . . . , Fk, x1, . . . , xl)

where F1, . . . Fk are increasing functions.

Property 12 This order is well-founded.

Proof

The (positive) measure F → F (idk, 1l) is monotone (where id : N → N is the identity function): If
F > G, then F (idk, 1l) > G(idk, 1l) ≥ 0. �

Definition 22 An interpretation L M maps an expression of a program to a function. It is arbitrarily
defined on the symbol functions, and the type of the interpretation is defined by the type of the symbol
function by induction:

– LfM has type N for all f of type Tau

– LfM has type N→ N for all f of type [Tau]

– LfM has type TA → TB for all f of type A -> B, where TA and TB are the types of the interpretations
of the symbol functions of types A and B.

We also define the interpretation of each constructor (making a special case for the stream construc-
tor):

– Lc (X1, . . . , Xn)M = X1 + . . . Xn + αc if c is a constructor of Tau (αc ∈ N \ {0}. In the following we
will assume, without loss of generality, that αc = 1).

– L:M(X,Y, Z + 1) = 1 +X + Y 〈Z〉 and L:M(X,Y, 0) = 1 +X

Once each function symbol and each constructor is interpreted, we can define the interpretation for
any term by induction (notice that we preserve the previous correspondence between the type of the
expression and the type of its interpretation):

– LxM = X if x is a variable of type Tau (we associate a unique type-1 variable X to each x ∈ X of type
Tau).

– LyM(Z) = Y 〈Z〉 if y is a variable of type [Tau] (we associate a unique type-2 variable Y to each
y ∈ X of type [Tau]).

– Lt e1 . . . enM = LtM(Le1M, . . . , LenM) if t ∈ C ∪ F

Lemma 6 The interpretation of an expression e is a positive functional of its free variables (and of its
variable Z if e has type [Tau]).

Proof

By structural induction on the expression. This is the case for variables and for the stream constructor,
the other constructors are additives, and the interpretations of function symbols are positive. �

Consequently, the interpretation of a closed expression of type Tau is a positive integer.

Definition 23 (Well-founded interpretation) An interpretation of a program is well-founded if for
all definition f p1 . . . pn = e, Lf p1 . . . pnM > LeM. By extension we will say that such a program is well-
founded.

14

These are some examples of programs with well-founded polynomial interpretations.

Example 9 The sum and product over unary integers:

plus :: Nat -> Nat -> Nat

plus 0 b = b

plus (a+1) b = (plus a b)+1

mult :: Nat -> Nat -> Nat

mult 0 b = 0

mult (a+1) b = plus b (mult a b)

They admit the following interpretations: LplusM(X1, X2) = 2×X1 +X2, LmultM(X1, X2) = 3×X1×X2:

– Lplus 0 bM = 2 +B > B = LbM
– Lplus (a+1) bM = 2A+ 2 +B > 2A+B + 1 = L(plus a b)+1M
– Lmult 0 bM = 3× L0M× LbM = 3×B > 1 = L0M
– Lmult (a+1) bM = 3×(LaM+1)×LbM = 3×A×B+3×B > 2×B+3×A×B = Lplus b (mult a b)M

s !! n1 gives the (n+ 1)th element of the stream s:

!! :: [Tau] -> Nat -> Tau

(h:t) !! (n+1) = t !! n

(h:t) !! 0 = h

It admits the well-founded interpretation Y,N → Y 〈N〉 :

– L(h:t) !! (n+1)M = Lh:tM(LnM + 1) = 1 + LhM + LtM(LnM) > LtM(LnM) = Lt !! nM
– L(h:t) !! 0M = Lh:tM(L0M) = Lh:tM(1) = 1 + LhM + LtM(0) > LhM

tln :: [Tau] -> Nat -> [Tau]

tln (h:t) (n+1) = tln t n

tln (h:t) 0 = t

In the same way, tln admits the well-founded interpretation Y,N,Z → Y 〈N + Z + 1〉.

Lemma 7 If e and e′ are expressions of a program with a well-founded interpretation such that e→ e′,
then LeM > Le′M .

Proof

By structural induction on the expression. If e→ e′ using :

– the (d) rule, we obtain LeM > Le′M using that L M decreases on each definition and using that > is
stable by substitution (LeM > Le′M is obtained by assigning interpretations, hence positive integers or
increasing positive functions, to the variables of e and e′).

– the (t)-rule with a function symbol f , Lf e1 . . . ei . . . enM > Lf e1 . . . e′i . . . enM is obtained by definition
of > and since f is increasing in each variable.

– the (t)-rule with a constructor c different from :, Lc e1 . . . ei . . . enM > Lc e1 . . . e′i . . . enM is obtained
by additivity of LcM.

– the (:)-rule, if e→ e′, by induction hypothesis, LeM > Le′M , so ∀z, Le : e0M(z) = 1 + LeM + Le0M〈z− 1〉 >
1 + Le′M + Le0M〈z − 1〉 = Le′ : e0M(z) (this also works with z = 0 using the convention Le0M(−1) = 0).

�

Corollary 3 LeM− Le′M bounds the size of the reduction of e→∗ e′.

Corollary 4 Every reduction chain beginning with an expression e of a well-founded program has its
length bounded by LeM .

1 We use the same infix notation as in Haskell.

15

Remark 10. This result means that to compute the nth element of a stream e, we need at most LeM(n)
reduction steps (since Le !! nM = LeM〈LnM〉 = LeM〈n+ 1〉 according to example 9).

The previous remark implies that every stream expression with a well-founded interpretation is pro-
ductive. Productive streams are defined in the literature[9] as terms weakly normalizable to infinite lists,
which is in our case equivalent to:

Definition 24 A stream s is productive if for all n ∈ Nat, s !! n evaluates to a strict value.

In the following, we will denote by eval a function forcing the full evaluation (i.e. to a strict value)
of its argument of type Tau.

Corollary 5 If f is a function with type [Tau]k → Taul → Tau of a program with a polynomial well-
founded interpretation, then eval(f e1 . . . en) reduces to a strict value v within a number of steps poly-
nomial in Le1M, . . . , LenM for all closed expressions e1, . . . , en.

Corollary 6 Assume we have a (deterministic) reduction strategy. If f has type [Tau]k → Taul → Tau

in a well-founded program, then for all ex1, . . . , exl : Tau and ey1, . . . , eyk : [Tau], eval(f ey1 . . . eyk ex1 . . . exl)
and eval(f ey′1 . . . ey

′
k ex1 . . . exl) reduce to the same value if for all n ≤ N, eyi !! n and ey′i !! n

reduce to the same value, where N = Lf ey1 . . . eyk ex1 . . . exlM.

Proof

Since pattern matchings on stream arguments have depth 1, the N th element of a stream cannot be
evaluated in less than N steps. eval(f ey1 . . . eyk ex1 . . . exl) evaluates in less than N steps, so at most
the N first elements of the input stream expressions can be evaluated. �

4.4 Link with polynomial time type-2 functions

Lemma 8 Every type-2 polynomial (on unary integers) can be computed by a program with a well-
founded polynomial interpretation.

Proof

Example 9 gives an interpretation and a polynomial interpretations for the addition (add) and multi-
plication (mult) on unary integers (Nat). Then, we can define f computing the type-2 polynomial P by
f y1 . . . yk x1 . . . xl = e where e is the strict implementation of P :

– Xi is implemented by xi
– Yi〈P 〉 is computed by yi !! P

– C where C is a constant is implemented by its unary encoding in Nat

– P1 + P2 is computed by plus e1 e2 if e1 and e2 respectively compute P1 and P2

– P1 × P2 is computed by mult e1 e2 if e1 and e2 respectively compute P1 and P2

Since plus and mult have a polynomial interpretation, LeM is a polynomial Pe of y1, . . . yk, x1, . . . , xl and
we can take LfM = Pe + 1. �

Lemma 9 Every polynomial time type-2 function can be computed by a program with a well-founded
polynomial interpretation.

Proof

16

input tapen2

query tape

output tape

answer tape

n1

a1 a2

. . . B

. . . B

. . . B

. . . B

B . . .

B . . .

B . . .

B . . .

q1 q2

o1 o2

↑

↑

↑

↑
Fig. 3: Encoding of the content of the tapes of an OTM. x represents the mirror of the word x and the
symbol ↑ represents the positions of the heads.

Let f : (N → N)k → Nl → N be a function computed by an OTM M in time P . For the sake
of simplicity, we will assume that k = l = 1. The main idea is to write a function giving the output
of M after t steps, to compute the corresponding order-2 polynomial and to apply the first function
with this number of steps. We can write a program which contains unary integers, binary integers
(Bin = Nil | 0 Bin | 1 Bin) (where Nil is the empty word), and a function with symbol f0 describing
the execution of M:

f :: [Bin] -> Nat -> Nat -> Bin8 -> Bin

f0 s 0 q n1 n2 q1 q2 a1 a1 o1 o2 = o2

Base case: if the timer is 0, then we output the content of the output tape (after its head). We also
have one line of this form for each line of the transition table of M:

f0 s (t+1) q n1 n2 q1 q2 a1 a2 o1 o2 = f0 s t q’ n1’ n2’ q1’ q2’ a1’ a2’ o1’ o2’

where s (of type [Bin]) is the stream representing the oracle, t (of type Nat) is the timer, q (of type Nat)
is the index of the current state, and the other arguments represent the four tapes (c.f. figure 3). A tape
is represented by s and (h : t) if its content is s, h, t (where s is the mirror of s and h ∈ {0, 1}) and if its
head is on the case corresponding to h. Then, we can easily emulate the moves of the heads and the shifts
in the content of the tape cells. We can also emulate oracle queries: if q is a query state, the answer tape
(o1’ and o2’) will be represented by Nil and (s !! q2) after this step. Since the transition function is
well described by a set of such definitions, the function f0 produces the content of o2 (i.e. the content
of the output tape) after t steps on entry t and configuration C (i.e. the state and the representations
of the tapes). f0 admits a well-founded polynomial interpretation Lf0M since the interpretation of each
of its arguments increases (from the left part to the right part of a definition) at most by a constant
C (depending on the number of states), apart from La2M which can increase by LsM(Lq2M) on a query
state. Then, LfM(Y, T,X1, . . . , Q2, . . . Xn) can be defined by (T + 1)× (Y 〈Q2〉+C) +X1 + . . . Xn, which
is strictly growing in each argument and strictly decreases on each definition. Lemma 8 shows how we
can implement the polynomial P as a function p, and give it a polynomial well-founded interpretation.
Finally, we pose:

size :: Bin -> Bin

size Nil = 0

size (0 x) = (size x) +1

size (1 x) = (size x) +1

max :: Nat -> Nat -> Nat

max 0 n = n

max n 0 = n

max (n+1) (k+1) = (max n k)+1

17

maxsize :: [Bin] -> Nat -> Nat

maxsize (h:t) 0 = size h

maxsize (h:t) (n+1) = max (maxsize t n) (size h)

f1 :: [Bin] -> Bin -> Bin

f1 s n = f0 s (p (size’ s) (size n)) q0 Nil n Nil Nil Nil Nil Nil Nil

where q0 is the index of the initial state. size computes the size of a binary number, and maxsize

computes the size function of a stream of binary numbers. f1 computes an upper bound on the number
of steps beforeM halts on entry n with oracle s (i.e. P (|s|, |n|)), and computes f0 with this time bound.
The output is then the value computed by M on these entries. f1 admits a well-founded interpretation,
since max, size and maxsize have ones:

– LsizeM(X) = 2X
– LmaxM(X1, X2) = X1 +X2

– LmaxsizeM(Y,X) = 2× Y 〈X〉
�

Corollary 7 The previous result implies that every polynomial time type-1 function (i.e. f : N → N)
can be implemented in our Haskell-like language and has a polynomial well-founded interpretation.

The converse of lemma 9 is also true:

Lemma 10 If a function f of type [Tau]k → Taul → Tau admits a polynomial well-founded interpreta-
tion, then it computes a function F : (N → N)k → Nl → N which is computable in polynomial time by
an OTM.

Proof

Lemma 5 shows that given some inputs and oracles, an OTM can compute LfM applied on their sizes
and get a unary integer N in polynomial time. According to corollary 6, the Haskell-like program needs
at most the first N values of each oracle. Then, we can build an OTM which queries all these values (in
time

∑
i≤N |f |(N), which is polynomial in the size of the inputs and th size of the oracles) and computes

F on these finite inputs: we can convert the program computing f into a program working on finite lists
(which will also have polynomial time complexity), and according to corollary 7, this type-1 program
can be computed in polynomial time by a (classical) Turing machine. �

Lemmas 9 and 10 provide this equivalence:

Theorem 2 A function f of type [Tau]k → Taul → Tau admits a polynomial well-founded interpretation
if and only if it computes a function F : (N → N)k → Nl → N which is computable in polynomial time
by an OTM.

Remark 11. A simple adaptation of the proofs of lemmas 9 and 10 gives a computability equivalence (a
type-2 function is computable by an OTM if and only if it is computed by a program with a well-founded
interpretation).

Remark 12. If we replace type-2 polynomials with functions of the form P ′ := c | Xi | P ′ + P ′ | P ′ ×
P ′ | Yi〈2P

′〉, we obtain a characterization of BFF. But this definition of polynomial time complexity
allows an exponential (in the size of the inputs) number of derivation steps (since BFF functions can
access to the nth element of a type-2 input in linear time in the size of the binary representation of n).

Remark 13. We have restricted our study to programs with pattern matching of depth 1 over stream
arguments. Nevertheless, we can generalize our results to arbitrary pattern matching depth by modifying
our program to only have depth-one pattern matching. For example, if f has one argument of type [Tau]
and the corresponding definitions do pattern matching of depth k over this argument, then we can rewrite
f like this (for each definition of the form f(p1 : (p2 : . . . (pk : t) . . .)) = e):

f s = f_aux (s !! 0) ... (s !! (k-1)) (tln s (k-1))

f_aux p1 ... pk t = e

18

(where k − 1 = 0+1+ ... +1 is the representation of k − 1 in Nat, and !! and tln are defined in
example 9). If f was interpreted by a polynomial P in the initial program, then we can interpret f_aux
with Paux(X1, . . . , Xk, T) = P (

∑
1≤i≤k(1 +Xi) + T).

Indeed, ∀Z ≥ k, (e1 : (e2 : . . . (ek : e) . . .))(Z) ≤ ∑
1≤i≤k(1 + LeiM) + T (Z)(forZ ≤ k, the left

term is
∑

1≤i≤Z(1 + LeiM)), and for Z > k it is
∑

1≤i≤k(1 + LeiM) + LeM(Z − k), which is less than∑
1≤i≤k(1 + LeiM) + LeM(Z) since e is an increasing function).
Finally, we redefine LfM simply by LfM(Y) = 1+Lf auxM(Y 〈1〉, Y 〈2〉, . . . Y 〈k〉, Y) , which is greater than

1 + Lf auxM(y !! 0, . . . , y !! (k − 1), Y). Then, a well-founded polynomial interpretation still ensures
polynomial time complexity, but the interpretation does not necessarily exactly bound the number of
reduction steps.

4.5 Haskell-like programs and polynomial time computable real functions

We have seen that computable real numbers can be represented as computable sequences of rational
numbers, that is streams of rational numbers. Then, real functions can be seen as functions of type
[Q] -> [Q], where Q is an inductive type describing rational numbers (e.g. pairs of binary integers Bin).
We will see that our notions of polynomial time complexity for stream functions and for real functions is
the same in order to be able to use the results of the previous section to implement real functions with
polynomial time complexity in a stream language.

This first result is straightforward.

Property 13 If a program with a well-founded polynomial interpretation computes a real function, then
this function is computable in polynomial time.

The converse is also true:

Property 14 Any polynomial-time computable real function (defined over R) can be implemented by a
well-founded polynomial Haskell-like program.

Proof

According to proposition 1, such a function can be described by two type-1 poly-time functions (fm
and fQ). γ is also computable in polynomial time. Corollary 7 ensures that these three functions can be
implemented by a well-founded polynomial program. Then, we can easily check that @(fm, fQ) (defined
in property 2) can be implemented using the implementation of γ, fm and fQ and the corresponding
program admits a polynomial well-founded interpretation:

f_aux :: Nat -> [Q] -> [Q]

f_aux n y = (fQ n (y !! (fm (gamma (hd y)) n))) : (f_aux (n+1) y)

f :: [Q] -> [Q]

f y = f_aux 0 y

(where Q is an inductive type representing rational numbers, fm, fQ and gamma are the functions imple-
menting fm, fQ and γ). Indeed, we can easily check that these interpretations work: Lf auxM(Y,N,Z) =
(Z + 1)× (1 + LfQM(N + Z, Y 〈LfmM(LgammaM(Y 〈0〉), N + Z)M)) and LfM(Y, Z) = 1 + Lf auxM(Y, 1, Z). �

Remark 14. This result could also be proved using remark 9 which states that a computable real function
can be computed by an OTM in polynomial time, and so by a well-founded polynomial program according
to lemma 9, but the previous proof provides a program which only needs an implementation of fm and
fQ , and is then more constructive.

Remark 15. This result is false for real functions defined over polynomial open sets. Indeed, the gamma
function is not necessarily computable in polynomial time and in this case has implementation with
a well-founded polynomial interpretation. Nevertheless, according to theorem 1, it is equivalent to say
that f : D → R is computable in polynomial time over the polynomial open set D if and only if there
exists a program with a well-founded polynomial interpretation computing g such that ∀x ∈ D, f(x) =
g(x, 1

d(x,Dc)).

19

5 Conclusion

We defined polynomial time complexity for real functions over quite general domains and gave a char-
acterization using the already well known type-1 functions. It would be interesting to have a function
algebra generating polynomial real functions, including some basic functions and operators like sum,
product, safe composition (i.e. preserving polynomial time complexity, as in property 9) and probably a
variation of safe recursion (as done for type-2 functions in BFF [11]) like a limit scheme (as it has been
done in [7] for a different class of real functions). The set of definition domains could also be expanded
(similar results can be obtained for domains D such that we only have a lower bound on the distance
function d(., Dc)). Our last sections have shown that our definition of polynomial time computability has
a real meaning when it comes to effectively programming these functions using streams, and we have
provided a way to ensure polynomial time complexity, not only for real functions but also for general
stream programs. The existence of a polynomial interpretation of such programs is undecidable in the
general case, but we might find some heuristics or decidable subclasses, as it has been done for pro-
grams without streams (e.g. programs admitting an interpretation in the algebra [N,max,+] [1]). Other
complexity classes could be characterized with a similar method. For example, space bounds have been
obtained using quasi-interpretations of type-1 programs [5].

References

1. R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae, 65(1):29–60, 2005.
2. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Computa-

tional complexity, 2(2):97–110, 1992.
3. L. Blum, M. Shub, F. Cucker, and S. Smale. Complexity and real computation. Springer Verlag, 1997.
4. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines. 21(1):1–46, 1989.
5. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretation: a way to control ressources. Interne,

2005.
6. O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial differential equations compute all

real computable functions on computable compact intervals. Journal of Complexity, 23(3):317 – 335, 2007.
7. O. Bournez and E. Hainry. Elementarily computable functions over the real numbers and -sub-recursive

functions. Theoretical Computer Science, 348(2-3):130 – 147, 2005. Automata, Languages and Programming:
Algorithms and Complexity (ICALP-A 2004).

8. A. Cobham. The Intrinsic Computational Difficulty of Functions. In Logic, methodology and philosophy of
science III: proceedings of the Third International Congress for Logic, Methodology and Philosophy of Science,
Amsterdam 1967, page 24. North-Holland Pub. Co., 1965.

9. J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity of stream definitions.
Theor. Comput. Sci., 411(4-5):765–782, 2010.

10. J. Girard. Light linear logic. In Logic and Computational Complexity, pages 145–176. Springer, 1998.
11. B. Kapron and S. Cook. A new characterization of type-2 feasibility. SIAM Journal on Computing, 25(1):117–

132, 1996.
12. K. Ko. Complexity theory of real functions. Birkhauser Boston Inc. Cambridge, MA, USA, 1991.
13. D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time. Typed Lambda Calculi and

Applications, pages 274–288, 1993.
14. R. Pechoux. Analyse de la complexité des programmes par interprétation sémantique. PhD thesis, Institut

National Polytechnique de Lorraine - INPL, 11 2007.
15. M. B. Pour-El and I. Richards. Computability and noncomputability in classical analysis. Transactions of

the American Mathematical Society, 275(2):539–560, 1983.
16. C. E. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys. MIT, 20:337–354, 1941.
17. K. Weihrauch. Computable analysis: an introduction. Springer Verlag, 2000.
18. Q. Zhou. Computable real-valued functions on recursive open and closed subsets of Euclidean space. Math-

ematical Logic Quarterly, 42(1):379–409, 2006.

20

	Polynomial time computable real functions

